Abstract
This study aimed to analyze the use of drones for behavioral monitoring of Murrah buffaloes in extensive and intensive production systems in Amapá, Brazil, contributing to the implementation of more accurate and sustainable breeding practices and reducing the need for labor. Ethograms were constructed at a height of 15 m, allowing safe and noninvasive identification of behaviors. The distribution of the data was analyzed for normality using the Shapiro–Wilk test (W = 0.803; p < 0.05) and homoscedasticity (F = 0.345; p = 0.558), which was shown to be homogeneous. Animal reactivity was evaluated using Spearman’s correlation coefficient, and the environmental effects on the response variables were evaluated using PERMANOVA. PCoA was used to explore the spatial distribution of the data. After 104 h of image storage, 17 behavioral types were identified. These results validated the use of the DJI Mini 2 drone for minimally invasive, effective, and low-cost aerial monitoring. The reactivity of the buffaloes to the drone decreased with increasing altitude, with 15 m being ideal for monitoring because it minimized stress and behavioral changes. Confined buffaloes (area 2) showed greater reactivity and spent more time in alert and tense states than buffaloes in pasture (area 1), which showed less reactivity due to more environmental stimuli. Multivariate analysis and PERMANOVA confirmed significant differences between the areas, with area 1 showing greater behavioral diversity (12 types) than area 2 (eight types).
References
Abreu, U. G. P., Bergier, I., Costa, F. P., Oliveira, F. O. F., & Nogueira, E. (2018). Sistema intensivo de produção na região tropical brasileira: o caso do Pantanal. Embrapa Pantanal.
Alencar, AEB.; Attademo, FLN.; Normande, IC.; & Luna, F.O. (2020). Uso de aeronaves não tripuladas (DRONES) para pesquisa e monitoramento de peixe-boi-marinho e seu habitat. ICMBio.
Alves, D. J. G. (2023). Possibilidades e desafios no uso de drone para mapeamento de comunidades tradicionais na Amazônia. Revista Brasileira de Geografia Física, 16(5), 2594-2608. http://doi.org/10.26848/rbgf.v16.5.p2594-2608.
Aquilani, C., Confessore, A., Bozzi, R., Sirtori, F., & Pugliese, C. (2022). Review: Precision Livestock Farming technologies in pasture-based livestock systems. Animal, 16(1), 100429. http://doi.org/10.1016/j.animal.2021.100429.
Arruda, R. C. N., Pedrosa, K. Y. F., Santos, M. A. S. J., Negreiros, M. R., Torres, M. A. O., Negreiros, I. R., Lima, F. C., & Soares, J. W. A. (2025). Monitoring of cattle in confinement with the aid of drone, surveillance of welfare conditions and automated counting. Research, Social Development, 14(2), e3214247947. http://doi.org/10.33448/ rsd-v14i2.47947.
Bernardi, A. C. C., Luchiari Junior, A., Perez, N. B., & Inamasu, R. Y. (2017). Potencial de uso das tecnologias de agricultura e pecuária de precisão e automação. Embrapa Pecuária Sudeste.
Buckland, S. T., Burnham, K. P., Anderson, D. R., Laake, J. L., & Borchers, D. L. (2004). Advanced distance sampling: Estimating abundance of biological populations. Oxford University Press.
Cockrill, W. R. (1984). Water buffalo: Evolution of domesticated animals (pp. 52-63). Longman Inc.
Damasceno, F. A., Viana, J. M., Tinôco, I. F. F., Gomes, R. C. C., & Schiassi, L. (2010). Adaptação de bubalinos ao ambiente tropical. Nutritime, 5, 1370-1381.
DJI. (2024). Software DJI Ground Station PRO (DJI GS PRO). Empresa DJI. https://www.dji.com.br
Duffy, J. P., Anderson, K., Shapiro, A. C., Spina Avino, F., DeBell, L., & Glover-Kapfer, P. (2020). Tecnologias de drones para conservação (Série de Tecnologias para Conservação do WWF, pp. 20-41). WWF.
Empresa Brasileira de Pesquisa Agropecuária. (2024). Pecuária de precisão auxilia na tomada de decisões e no aumento de eficiência. https://www.embrapa.br
Fox, J., & Weisberg, S. (2019). An {R} Companion to Applied Regression (3rd ed). https://socialsciences.mcmaster.ca/ jfox/Books/Companion/.2019
Hamilton, S. (2018). More than pretty pictures: Drones, bison kills, and considerations of cultural landscapes. Archaeological Survey of Alberta Occasional Paper, 38, 53-91.
Herve, M. (2023). RVAideMemoire: Testing and Plotting Procedures for Biostatistics. R package version 0.9-82-2. https://CRAN.R project.org/package=RVAideMemoire
Instituto Brasileiro de Geografia e Estatística. (2023). Censo agropecuário. https://www.ibge.gov.br
Khanal, A. R., Gillespie, J., & MacDonald, J. (2010). Adoption of technology, management practices, and production systems in US milk production. Journal of Dairy Science, 93(12), 6012-6022. http://doi.org/10.3168/jds.2010- 3425. PMid:21094776.
Koger, B., Deshpande, A., Kerby, J. T., Graving, J. M., Costelloe, B. R., & Couzin, I. D. (2023). Quantifying the movement, behaviour and environmental context of group-living animals using drones and computer vision. Journal of Animal Ecology, 92(7), 1357-1371. http://doi.org/10.1111/1365-2656.13904. PMid:36945122.
Martínez, G. B., Azevedo, C. M. B. C., Maria, B. G., Oliveira Junior, M. C. M., & Rodrigues Filho, J. A. (2023). Behaviour of buffaloes in different silvipastoral system arrangements in the northeast paraense. Brazilian Journal of Development, 5, 16454-16470.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., & Legendre, P. (2018). Package” vegan “Community Ecology Package. R package version 2.5-2. https://CRAN.R-project.org/package=vegan
Oliveira, A. F. M., Quirino, C. R., Barbosa, P. O., & Rodrigues, S. J. A. (Org.) (2021). Considerações do comportamento e bem-estar animal búfalos e peixes (77 p.). Editora Edifes. http://doi.org/10.36524/9786586361940.
Oliveira, R. L., Barbosa, M. A. A. F., & Ladeira, M. M. (2008). Nutrição e manejo de bovinos de corte na fase de cria. Revista Brasileira de Saúde e Produção Animal, 7, 90-115.
Paranhos da Costa, M. J. R., & Magalhães, L. (2015). Temperamento de bovinos Gir e Girolando: Efeitos genéticos e de manejo. Informe Agropecuário, 286, 100-107.
Porto, S. L. B., Lobo, K. A. N., Silva, A. S. L., Maia, C. P., & Souza, G. C. (2018). Avaliação do comportamento de bovinos e bubalinos durante exposição feira agroindustrial do baixo Amazonas. Agroecossistemas, 10(2), 11-24. http://doi.org/10.18542/ragros.v10i2.5195.
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Schad, L., & Fischer, J. (2022). Opportunities and risks in the use of drones for studying animal behaviour. Methods in Ecology and Evolution, 14(8), 1864-1872. http://doi.org/10.1111/2041-210X.13922.
Serpa, N., Frainer, G., Gass, C. M., Santos, B., & Moreno, I. (2018). Sob os nossos olhos: Desvendando o comportamento dos botos da barra (tursiops gephyreus) a partir da perspectiva aérea. Universidade Federal do Rio Grande do Sul.
Silva, G. C., & Ribeiro, L. S. (2021). Os bubalinos no brasil e a produção de leite. GETEC, 26, 42-50.
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2025 Maria Angélica Damasceno Rocha, Frederico Ozanan Barros Monteiro