Abstract
Leishmania infantum is a parasite that causes leishmaniasis in its visceral clinical manifestations, which is considered a zoonosis and can infect both humans and animals. Currently, there is no highly effective treatment available, and many animals that exhibit symptoms ultimately die as a result of the disease and its complications. The clinical signs of leishmaniasis are varied and nonspecific. The main symptoms are severe anemia and thrombocytopenia, weight loss, splenomegaly, lymphadenomegaly, liver disease, kidney failure, and skin lesions, among others. Due to the chronic inflammatory state caused by the parasite, an oxidative environment is created, leading to potential cell injury and damage to the infected animals’ genetic material. To investigate DNA damage, we conducted the micronucleus test and comet assay, as well as measured serum LDH levels in infected and non-infected dogs. Our results indicate that infected dogs present significantly higher levels of serum LDH (461.4 ± 204.5 U/L, n=36) compared to healthy dogs (142.38 ± 37.94 U/L, n=5). Additionally, the DNA of infected dogs is more damaged than that of the control group, as demonstrated by the micronucleus test (p=0.01) and comet assay (p=0.002). These findings suggest that Leishmania infantum infection can lead to clastogenic events, highlighting the need for further research on this process. It is important to consider the potential mutagenic properties of Leishmania infantum, given its ability to cause DNA damage in infected animals.
References
Araldi, R. P., Melo, T. C., Mendes, T. B., Sá Junior, P. L., Nozima, B. H., Ito, E. T., Carvalho, R. F., Souza, E. B., & Cassia Stocco, R. (2015). Using the comet and micronucleus assays for genotoxicity studies: A review. Biomedicine and Pharmacotherapy, 72, 74-82. http://doi.org/10.1016/j.biopha.2015.04.004. PMid:26054678.
Avila, J. P., Singh, Y., Souza, F. M., Assunção, S. F., Damasceno, S., Guedes, H. L. M., Cunha, T. M., Bueno Filho, R., Silva, J. S., & Nakaya, H. I. (2025). T cell dysfunction in cutaneous leishmaniasis at single-cell resolution. medRxiv. http://doi.org/10.1101/2025.02.21.25322565.
Backer, L. C., Grindem, C. B., Corbett, W. T., Cullins, L., & Hunter, J. L. (2001). Pet dogs as sentinels for environmental contamination. The Science of the Total Environment, 274(1-3), 161-169. http://doi.org/10.1016/ S0048-9697(01)00740-9. PMid:11453293.
Basu, A. K. (2018). DNA damage, mutagenesis and cancer. International Journal of Molecular Sciences, 19(4), 970. http://doi.org/10.3390/ijms19040970. PMid:29570697.
Brodskyn, C. I., & Kamhawi, S. (2018). Biomarkers for zoonotic visceral leishmaniasis in Latin America. Frontiers in Cellular and Infection Microbiology, 8, 245. http://doi.org/10.3389/fcimb.2018.00245. PMid:30175073.
Chisti, M., Almasri, R., & Hamadah, I. (2016). Is cutaneous leishmaniasis a risk factor for basal cell carcinoma? The Gulf Journal of Oncology, 1(21), 64-66. PMid:27250891.
Dönmez-Altuntas, H., Hamurcu, Z., Liman, N., Demirtas, H., & Imamoglu, N. (2006). Increased micronucleus frequency after oral administration of cadmium in dogs. Biological Trace Element Research, 112(3), 241-246. http://doi.org/10.1385/BTER:112:3:241. PMid:17057263.
Fenech, M. (1993). The cytokinesis-block micronucleus technique: A detailed description of the method and its application to genotoxicity studies in human populations. Mutation Research, 285(1), 35-44. http:// doi.org/10.1016/0027-5107(93)90049-L. PMid:7678131.
Fenech, M. (2007). Cytokinesis-block micronucleus cytome assay. Nature Protocols, 2(5), 1084-1104. http://doi.org/10.1038/nprot.2007.77. PMid:17546000.
Ferro, S., Palmieri, C., Cavicchioli, L., Zan, G., Aresu, L., & Benali, S. L. (2013). Leishmania amastigotes in neoplastic cells of 3 nonhistiocytic canine tumors. Veterinary Pathology, 50(5), 749-752. http://doi.org/10.1177/0300985813480192. PMid:23482523.
Gallo, M., Sapio, L., Spina, A., Naviglio, D., Calogero, A., & Naviglio, S. (2015). Lactic dehydrogenase and cancer: An overview. Frontiers in Bioscience, 20(8), 1234-1249. http://doi.org/10.2741/4368. PMid:25961554.
Ivănescu, L., Andronic, B. L., Grigore-Hristodorescu, S., Martinescu, G. V., Mîndru, R., & Miron, L. (2023). The immune response in canine and human leishmaniasis and how this influences the diagnosis: A review and assessment of recent research. Frontiers in Cellular and Infection Microbiology, 13, 1326521. http://doi.org/10.3389/ fcimb.2023.1326521. PMid:38149009.
Kocyigit, A., Keles, H., Selek, S., Guzel, S., Celik, H., & Erel, O. (2005). Increased DNA damage and oxidative stress in patients with cutaneous leishmaniasis. Mutation Research, 585(1-2), 71-78. http://doi.org/10.1016/j.mrgentox.2005.04.012. PMid:16005255.
Kopanke, J. H., Chen, A. V., Brune, J. E., Brenna, A. C., & Thomovsky, S. A. (2018). Reference intervals for the activity of lactate dehydrogenase and its isoenzymes in the serum and cerebrospinal fluid of healthy canines. Veterinary Clinical Pathology, 47(2), 267-274. http://doi.org/10.1111/vcp.12595. PMid:29505118.
Masrour-Roudsari, J., & Ebrahimpour, S. (2017). Causal role of infectious agents in cancer: An overview. Caspian Journal of Internal Medicine, 8(3), 153-158. PMid:28932365.
Meira, L. B., Bugni, J. M., Green, S. L., Lee, C. W., Pang, B., Borenshtein, D., Rickman, B. H., Rogers, A. B., Moroski- Erkul, C. A., McFaline, J. L., Schauer, D. B., Dedon, P. C., Fox, J. G., & Samson, L. D. (2008). DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. The Journal of Clinical Investigation, 118(7), 2516-2525. http://doi.org/10.1172/JCI35073. PMid:18521188.
Morales-Yuste, M., Martín-Sánchez, J., & Corpas-Lopez, V. (2022). Canine Leishmaniasis: Update on epidemiology, diagnosis, treatment, and prevention. Veterinary Sciences, 9(8), 387. http://doi.org/10.3390/vetsci9080387. PMid:36006301.
Moreira, V. R., Jesus, L. C. L., Soares, R. P., Silva, L. D. M., Pinto, B. A. S., Melo, M. N., Paes, A. M. A., & Pereira, S. R. F. (2017). Meglumine antimoniate (Glucantime) causes oxidative stress-derived DNA damage in BALB/c mice infected by Leishmania (Leishmania) infantum. Antimicrobial Agents and Chemotherapy, 61(6), e02360-16. http://doi.org/10.1128/AAC.02360-16. PMid:28320726.
Passonneau, J. V., & Lowry, O. H. (2008). Enzymatic analysis: A practical guide. Totowa, NJ: Springer.
Podaliri Vulpiani, M., Iannetti, L., Paganico, D., Iannino, F., & Ferri, N. (2011). Methods of control of the leishmania infantum dog reservoir: State of the art. Veterinary Medicine International, 2011, 215964. http://doi.org/10.4061/2011/215964. PMid:21772963.
Schwing, A., Pomares, C., Majoor, A., Boyer, L., Marty, P., & Michel, G. (2019). Leishmania infection: Misdiagnosis as cancer and tumor-promoting potential. Acta Tropica, 197, 104855. http://doi.org/10.1016/j.actatropica.2018.12.010. PMid:30529443.
Silva, P. P. L., Pessatto, L. R., Baranoski, A., Oliveira, R., & Souza, A. (2023). Evaluation of genome stability of bone marrow cells of dogs with naturally infected visceral leishmaniasis. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 75(6), 3. http://doi.org/10.1590/1678-4162-12663.
Silva, J. R., et al (2021). Cellular and humoral immune responses in dogs naturally infected with Leishmania infantum in an endemic area of Brazil. Parasites & Vectors, 14, 123.
Silveira, F. T., Lainson, R., Pereira, E. A., de Souza, A. A., Campos, M. B., Chagas, E. J., Gomes, C. M., Laurenti, M. D., & Corbett, C. E. (2009). A longitudinal study on the transmission dynamics of human Leishmania (Leishmania) infantum chagasi infection in Amazonian Brazil, with special reference to its prevalence and incidence. Parasitology Research, 104(3), 559-567. http://doi.org/10.1007/s00436-008-1230-y. PMid:18936975.
Solano-Gallego, L., Koutinas, A., Miro, G., Cardoso, L., Pennisi, M. G., Ferrer, L., Bourdeau, P., Oliva, G., & Baneth, G. (2009). Directions for the diagnosis, clinical staging, treatment and prevention of canine leishmaniosis. Veterinary Parasitology, 165(1-2), 1-18. http://doi.org/10.1016/j.vetpar.2009.05.022. PMid:19559536.
Solano-Gallego, L., Montserrrat-Sangra, S., Ordeix, L., & Martinez-Orellana, P. (2016). Leishmania infantum-specific production of IFN-gamma and IL-10 in stimulated blood from dogs with clinical leishmaniosis. Parasites & Vectors, 9(1), 317. http://doi.org/10.1186/s13071-016-1598-y. PMid:27260142.
Vilas-Boas, D. F., Nakasone, E. K. N., Gonçalves, A. A. M., Lair, D. F., Oliveira, D. S., Pereira, D. F. S., Silva, G. G., Conrado, I. S. S., Resende, L. A., Zaldívar, M. F., Mariano, R. M. S., Dutra, W. O., Chávez-Fumagalli, M. A., Galdino, A. S., Silveira-Lemos, D., & Giunchetti, R. C. (2024). Global distribution of canine visceral leishmaniasis and the role of the dog in the epidemiology of the disease. Pathogens, 13(6), 455. http://doi.org/10.3390/ pathogens13060455. PMid:38921753.
Yu, S. L., Xu, L. T., Qi, Q., Geng, Y. W., Chen, H., Meng, Z. Q., Wang, P., & Chen, Z. (2017). Serum lactate dehydrogenase predicts prognosis and correlates with systemic inflammatory response in patients with advanced pancreatic cancer after gemcitabine-based chemotherapy. Scientific Reports, 7(1), 45194. http://doi.org/10.1038/srep45194. PMid:28345594.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2025 Roberta Tognareli Ruiz, Aline Cechinel Assing Batista, Jorge Luis Maria Ruiz