Analysis of VEGFR-2 and PDGFR-β expression in canine splenic hemangiosarcoma to identify drug repositioning candidates
PDF
XML

Keywords

dogs, spleen, endothelial cells, drug repurposing.

How to Cite

Vicente, I. S. T., de Moura, F. B. C., Rozolen, J. M., dos Anjos, D. S., Sobral, R. A., & Alves, C. E. F. (2024). Analysis of VEGFR-2 and PDGFR-β expression in canine splenic hemangiosarcoma to identify drug repositioning candidates. Brazilian Journal of Veterinary Medicine, 46, e001524. https://doi.org/10.29374/2527-2179.bjvm001524

Abstract

Splenic tumors are very common in dogs, and canine hemangiosarcoma (HSA) is one of the most important malignant splenic tumors. Surgery followed by chemotherapy (anthracycline-based protocols) is recommended for treating canine HSA; however, patients still do not achieve long-term survival. Therefore, this research aimed to assess vascular endothelial growth factor receptor-2 (VEGFR-2) and platelet-derived growth factor receptor-β (PDGFR-β) gene expression in formalin-fixed tissues, evaluate the quality of mRNA for quantitative polymerase chain reaction (qPCR) analysis and identify drug repositioning candidates based on VEGFR-2 and PDGFR-β. qPCR analysis identified the relative expression of heterogeneous VEGFR-2 and PDGFR-β, with samples showing no transcripts or very low expression and those with higher relative quantification for both genes. We then used immunohistochemistry to correlate the relative quantification of VEGFR-2 and PDGFR-β transcripts with respective higher protein expression to validate our results. In the next step, we evaluated drug repositioning candidates and identified small molecule inhibitors (i.e. sorafenib) and natural compounds (curcumin and resveratrol) with the ability to block VEGFR-2 and PDGFR-β genes. Overall, our results indicated that VEGFR-2 and PDGFR-β expression is highly variable among canine HSA samples and different drugs can block the expression of both genes. Therefore, a personalized approach could be useful for selecting anti-VEGFR-2 and PDGFR-β therapies and both genes are potential candidates for future oncological panels.

https://doi.org/10.29374/2527-2179.bjvm001524
PDF
XML

References

Adachi, M., Hoshino, Y., Izumi, Y., & Takagi, S. (2016). Immunohistochemical detection of a potential molecular therapeutic target for canine hemangiosarcoma. The Journal of Veterinary Medical Science, 78(4), 649-656. http://doi.org/10.1292/jvms.15-0625. PMid:26685984.

Asa, S. A., Murai, A., Murakami, M., Hoshino, Y., Mori, T., Maruo, K., Khater, A., El-Sawak, A., el-Aziz, E. A., Yanai, T., & Sakai, H. (2012). Expression of platelet-derived growth factor and its receptors in spontaneous canine hemangiosarcoma and cutaneous hemangioma. Histology and Histopathology, 27(5), 601-607. PMid:22419024.

Bernabe, L. F., Portela, R., Nguyen, S., Kisseberth, W. C., Pennell, M., Yancey, M. F., & London, C. A. (2013). Evaluation of the adverse event profile and pharmacodynamics of toceranib phosphate administered to dogs with solid tumors at doses below the maximum tolerated dose. BMC Veterinary Research, 9(1), 190. http://doi. org/10.1186/1746-6148-9-190. PMid:24079884.

Bianco, A. V., Abood, S., Mutsaers, A., Woods, J. P., Coe, J. B., & Verbrugghe, A. (2020). Unconventional diets and nutritional supplements are more common in dogs with cancer compared to healthy dogs: An online global survey of 345 dog owners. Veterinary and Comparative Oncology, 18(4), 706-717. http://doi.org/10.1111/ vco.12599. PMid:32304175.

Campigotto, G., Alba, D. F., Sulzbach, M. M., Dos Santos, D. S., Souza, C. F., Baldissera, M. D., Gundel, S., Ourique, A. F., Zimmer, F., Petrolli, T. G., Paiano, D., & Silva, A. S. (2020). Dog food production using curcumin as antioxidant: Effects of intake on animal growth, health and feed conservation. Archives of Animal Nutrition, 74(5), 397-413. http://doi.org/10.1080/1745039X.2020.1769442. PMid:32602378.

Carlson, A., Alderete, K. S., Grant, M. K. O., Seelig, D. M., Sharkey, L. C., & Zordoky, B. N. M. (2018). Anticancer effects of resveratrol in canine hemangiosarcoma cell lines. Veterinary and Comparative Oncology, 16(2), 253-261. http://doi.org/10.1111/vco.12375. PMid:29235249.

Carnio, A., Eleni, C., Cocumelli, C., Bartolomé Del Pino, L. E., Simeoni, S., Spallucci, V., & Scaramozzino, P. (2020). Evaluation of intrinsic and extrinsic risk factors for dog visceral hemangiosarcoma: A retrospective casecontrol study register-based in Lazio region, Italy. Preventive Veterinary Medicine, 181, 105074. http://doi.org/10.1016/j.prevetmed.2020.105074. PMid:32634752.

Cawley, J. R., Stewart, S. D., Mochel, J. P., Veluvolu, S., Khanna, C., & Fenger, J. M. (2022). Pharmacokinetic exposures associated with oral administration of sorafenib in dogs with spontaneous tumors. Frontiers in Veterinary Science, 9, 888483. http://doi.org/10.3389/fvets.2022.888483. PMid:35664857.

Cheng, N., Schulte, A. J., Santosa, F., & Kim, J. H. (2021). Machine learning application identifies novel gene signatures from transcriptomic data of spontaneous canine hemangiosarcoma. Briefings in Bioinformatics, 22(4), bbaa252. http://doi.org/10.1093/bib/bbaa252. PMid:33078825.

Deng, J., Golub, L. M., Lee, H. M., Lin, M. C., Bhatt, H. D., Hong, H. L., Johnson, F., Scaduto, J., Zimmerman, T., & Gu, Y. (2020). Chemically-modified curcumin 2.24: A novel systemic therapy for natural periodontitis in dogs. Journal of Experimental Pharmacology, 12, 47-60. http://doi.org/10.2147/JEP.S236792. PMid:32104105.

Dickerson, E. B., Marley, K., Edris, W., Tyner, J. W., Schalk, V., MacDonald, V., Loriaux, M., Druker, B. J., & Helfand, S. C. (2013). Imatinib and dasatinib inhibit hemangiosarcoma and implicate PDGFR-β and Src in tumor growth. Translational Oncology, 6(2), 158-IN7. http://doi.org/10.1593/tlo.12307. PMid:23544168.

Foskett, A., Manley, C., Naramore, R., Gordon, I. K., Stewart, B. M., & Khanna, C. (2017). Tolerability of oral sorafenib in pet dogs with a diagnosis of cancer. Veterinary Medicine, 8, 97-102. http://doi.org/10.2147/VMRR.S149678. PMid:30050861.

Gardner, H. L., London, C. A., Portela, R. A., Nguyen, S., Rosenberg, M. P., Klein, M. K., Clifford, C., Thamm, D. H., Vail, D. M., Bergman, P., Crawford-Jakubiak, M., Henry, C., Locke, J., & Garrett, L. D. (2015). Maintenance therapy with toceranib following doxorubicin-based chemotherapy for canine splenic hemangiosarcoma. BMC Veterinary Research, 11(1), 131. http://doi.org/10.1186/s12917-015-0446-1. PMid:26062540.

Heishima, K., Aketa, N., Heishima, M., & Kawachi, A. (2023). Hemangiosarcoma in dogs as a potential non-rodent animal model for drug discovery research of angiosarcoma in humans. Frontiers in Oncology, 13, 1250766. http://doi.org/10.3389/fonc.2023.1250766. PMid:38130992.

Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: A review of its effects on human health. Foods, 6(10), 92. http:// doi.org/10.3390/foods6100092. PMid:29065496.

Icahn School of Medicine at Mount Sinai. (2023a). Drug Gene Budger (DGB). New York. https://maayanlab.cloud/DGB

Icahn School of Medicine at Mount Sinai. (2023b). L1000FWD. New York. https://maayanlab.cloud/l1000fwd/#

Johnson, W. D., Morrissey, R. L., Usborne, A. L., Kapetanovic, I., Crowell, J. A., Muzzio, M., & McCormick, D. L. (2011). Subchronic oral toxicity and cardiovascular safety pharmacology studies of resveratrol, a naturally occurring polyphenol with cancer preventive activity. Food and Chemical Toxicology, 49(12), 3319-3327. http:// doi.org/10.1016/j.fct.2011.08.023. PMid:21939727.

Johnson, K. A., Powers, B. E., Withrow, J. S., Sheetz, M. J., Curtis, C. R., & Wrigley, R. H. (1989). Splenomegaly in dogs. Predictors of neoplasia and survival after splenectomy. Journal of Veterinary Internal Medicine, 3(3), 160-166. http://doi.org/10.1111/j.1939-1676.1989.tb03092.x. PMid:2778749.

Jourdan, J. P., Bureau, R., Rochais, C., & Dallemagne, P. (2020). Drug repositioning: A brief overview. The Journal of Pharmacy and Pharmacology, 72(9), 1145-1151. http://doi.org/10.1111/jphp.13273. PMid:32301512.

Kang, Y. K., Ryu, M. H., Di Bartolomeo, M., Chau, I., Yoon, H., Kim, J. G., Lee, K. W., Oh, S. C., Takashima, A., Kryzhanivska, A., Chao, Y., Evesque, L., Schenker, M., McGinn, A., Zhao, Y., Lee, J., Wyrwicz, L., & Boku, N. (2024). Rivoceranib, a VEGFR-2 inhibitor, monotherapy in previously treated patients with advanced or metastatic gastric or gastroesophageal junction cancer (ANGEL study): An international, randomized, placebo-controlled, phase 3 trial. Gastric Cancer, 27(2), 375-386. http://doi.org/10.1007/s10120-023-01455-5. PMid:38281295.

Kashofer, K., Viertler, C., Pichler, M., & Zatloukal, K. (2013). Quality control of RNA preservation and extraction from paraffin-embedded tissue: Implications for RT-PCR and microarray analysis. PLoS One, 8(7), e70714. http://doi.org/10.1371/journal.pone.0070714. PMid:23936242.

Ko, J. H., Sethi, G., Um, J. Y., Shanmugam, M. K., Arfuso, F., Kumar, A. P., Bishayee, A., & Ahn, K. S. (2017). The role of resveratrol in cancer therapy. International Journal of Molecular Sciences, 18(12), 2589. http://doi.org/10.3390/ ijms18122589. PMid:29194365.

Lin, L. H., Lin, J. S., Yang, C. C., Cheng, H. W., Chang, K. W., & Liu, C. J. (2020). Overexpression of platelet-derived growth factor and its receptor are correlated with oral tumorigenesis and poor prognosis in oral squamous cell carcinoma. International Journal of Molecular Sciences, 21(7), 2360. http://doi.org/10.3390/ijms21072360. PMid:32235327.

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods, 25(4), 402-408. http://doi.org/10.1006/meth.2001.1262. PMid:11846609.

Luo, H., Mattes, W., Mendrick, D. L., & Hong, H. (2016). Molecular docking for identification of potential targets for drug repurposing. Current Topics in Medicinal Chemistry, 16(30), 3636-3645. http://doi.org/10.2174/15680 26616666160530181149. PMid:27334201.

Marconato, L., Sabattini, S., Marisi, G., Rossi, F., Leone, V. F., & Casadei-Gardini, A. (2020). Sorafenib for the treatment of unresectable hepatocellular carcinoma: Preliminary toxicity and activity data in dogs. Cancers, 12(5), 1272. http://doi.org/10.3390/cancers12051272. PMid:32443457.

Megquier, K., Turner-Maier, J., Swofford, R., Kim, J. H., Sarver, A. L., Wang, C., Sakthikumar, S., Johnson, J., Koltookian, M., Lewellen, M., Scott, M. C., Schulte, A. J., Borst, L., Tonomura, N., Alfoldi, J., Painter, C., Thomas, R., Karlsson, E. K., Breen, M., Modiano, J. F., Elvers, I., & Lindblad-Toh, K. (2019). Comparative genomics reveals shared mutational landscape in canine hemangiosarcoma and human angiosarcoma. Molecular Cancer Research, 17(12), 2410-2421. http://doi.org/10.1158/1541-7786.MCR-19-0221. PMid:31570656.

Murali, R., Chandramohan, R., Moller, I., Scholz, S. L., Berger, M., Huberman, K., Viale, A., Pirun, M., Socci, N. D., Bouvier, N., Bauer, S., Artl, M., Schilling, B., Schimming, T., Sucker, A., Schwindenhammer, B., Grabellus, F., Speicher, M. R., Schaller, J., Hillen, U., Schadendorf, D., Mentzel, T., Cheng, D. T., Wiesner, T., & Griewank, K. G. (2015). Targeted massively parallel sequencing of angiosarcomas reveals frequent activation of the mitogen activated protein kinase pathway. Oncotarget, 6(34), 36041-36052. http://doi.org/10.18632/oncotarget.5936. PMid:26440310.

Nakano, Y., Kobayashi, T., Oshima, F., Fukazawa, E., Yamagami, T., Shiraishi, Y., & Takanosu, M. (2014). Imatinib responsiveness in canine mast cell tumors carrying novel mutations of c-KIT exon 11. The Journal of Veterinary Medical Science, 76(4), 545-548. http://doi.org/10.1292/jvms.13-0156. PMid:24292246.

Owen, L. N. (Ed.). (1980). TNM classification of tumours in domestic animals. Geneva: World Health Organization.

Painter, C. A., Jain, E., Tomson, B. N., Dunphy, M., Stoddard, R. E., Thomas, B. S., Damon, A. L., Shah, S., Kim, D., Gómez Tejeda Zañudo, J., Hornick, J. L., Chen, Y. L., Merriam, P., Raut, C. P., Demetri, G. D., van Tine, B. A., Lander, E. S., Golub, T. R., & Wagle, N. (2020). The angiosarcoma project: Enabling genomic and clinical discoveries in a rare cancer through patient-partnered research. Nature Medicine, 26(2), 181-187. http://doi. org/10.1038/s41591-019-0749-z. PMid:32042194.

Parisi, D., Adasme, M. F., Sveshnikova, A., Bolz, S. N., Moreau, Y., & Schroeder, M. (2020). Drug repositioning or target repositioning: A structural perspective of drug-target-indication relationship for available repurposed drugs. Computational and Structural Biotechnology Journal, 18, 1043-1055. http://doi.org/10.1016/j.csbj.2020.04.004. PMid:32419905.

Pinello, K., Pires, I., Castro, A. F., Carvalho, P. T., Santos, A., Matos, A., Queiroga, F., Canadas-Sousa, A., Dias-Pereira, P., Catarino, J., Faísca, P., Branco, S., Lopes, C., Marcos, F., Peleteiro, M. C., Pissarra, H., Ruivo, P., Magalhães, R., Severo, M., & Niza-Ribeiro, J. (2022). Cross species analysis and comparison of tumors in dogs and cats, by age, sex, topography and main morphologies. Data from Vet-OncoNet. Veterinary Sciences, 9(4), 167. http://doi.org/10.3390/vetsci9040167. PMid:35448665.

Restucci, B., Papparella, S., Maiolino, P., & De Vico, G. (2002). Expression of vascular endothelial growth factor in canine mammary tumors. Veterinary Pathology, 39(4), 488-493. http://doi.org/10.1354/vp.39-4-488. PMid:12126152.

Robinson, K. L., Bryan, M. E., Atkinson, E. S., Keeler, M. R., Hahn, A. W., & Bryan, J. N. (2020). Neutering is associated with developing hemangiosarcoma in dogs in the Veterinary Medical Database: An age and time-period matched case-control study (1964-2003). The Canadian Veterinary Journal. La Revue Veterinaire Canadienne, 61(5), 499-504. PMid:32355348

Rossman, P., Zabka, T. S., Ruple, A., Tuerck, D., Ramos-Vara, J. A., Liu, L., Mohallem, R., Merchant, M., Franco, J., Fulkerson, C. M., Bhide, K. P., Breen, M., Aryal, U. K., Murray, E., Dybdal, N., Utturkar, S. M., Fourez, L. M., Enstrom, A. W., Dhawan, D., & Knapp, D. W. (2021). Phase I/II trial of vemurafenib in dogs with naturally occurring, BRAF-mutated urothelial carcinoma. Molecular Cancer Therapeutics, 20(11), 2177-2188. http://doi.org/10.1158/1535-7163.MCT-20-0893. PMid:34433660.

Rozolen, J. M., Teodoro, T. G. W., Sobral, R. A., Sueiro, F. A. R., Laufer-Amorim, R., Elias, F., & Fonseca-Alves, C. E. (2021). Investigation of prognostic value of Claudin-5, PSMA, and Ki67 expression in canine splenic hemangiosarcoma. Animals, 11(8), 2406. http://doi.org/10.3390/ani11082406. PMid:34438863.

Saha, J., Kim, J. H., Amaya, C. N., Witcher, C., Khammanivong, A., Korpela, D. M., Brown, D. R., Taylor, J., Bryan, B. A., & Dickerson, E. B. (2021). Propranolol sensitizes vascular sarcoma cells to doxorubicin by altering lysosomal drug sequestration and drug efflux. Frontiers in Oncology, 10, 614288. http://doi.org/10.3389/fonc.2020.614288. PMid:33598432.

Tamburini, B. A., Phang, T. L., Fosmire, S. P., Scott, M. C., Trapp, S. C., Duckett, M. M., Robinson, S. R., Slansky, J. E., Sharkey, L. C., Cutter, G. R., Wojcieszyn, J. W., Bellgrau, D., Gemmill, R. M., Hunter, L. E., & Modiano, J. F. (2010). Gene expression profiling identifies inflammation and angiogenesis as distinguishing features of canine hemangiosarcoma. BMC Cancer, 10(1), 619. http://doi.org/10.1186/1471-2407-10-619. PMid:21062482.

Terauchi, M., Fujii, Y., Goto, S., Iwasaki, R., Yoshikawa, R., & Mori, T. (2023). Efficacy and adverse events of anthracycline and propranolol combination in five dogs with stage 3 hemangiosarcoma. Open Veterinary Journal, 13(6), 801-806. http://doi.org/10.5455/OVJ.2023.v13.i6.15. PMid:37545711.

Turna, O., Baykal, A., Sozen Kucukkara, E., Deveci Ozkan, A., Guney Eskiler, G., & Yıldırım, F. (2022). Evaluation of curcumin therapeutic effects on histological subtypes of canine mammary gland tumours. Nutrition and Cancer, 74(8), 3015-3025. http://doi.org/10.1080/01635581.2022.2032216. PMid:35089107.

Verma, M., Sarfraz, A., Hasan, I., Khan, F., & Vasudev, P. G. (2024). Structure-activity relationship studies on VEGFR2 tyrosine kinase inhibitors for identification of potential natural anticancer compounds. Medicinal Chemistry, 20(6), 646-661. http://doi.org/10.2174/0115734064247526231129080415. PMid:38299297.

Wang, Z., He, E., Sani, K., Jagodnik, K. M., Silverstein, M. C., & Ma’ayan, A. (2019). Drug Gene Budger (DGB): An application for ranking drugs to modulate a specific gene based on transcriptomic signatures. Bioinformatics, 35(7), 1247-1248. http://doi.org/10.1093/bioinformatics/bty763. PMid:30169739.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Igor Simões Tiagua Vicente, Fernanda Barthelson Carvalho de Moura, Juliana Moreira Rozolen, Denner Santos dos Anjos, Renata Afonso Sobral, Carlos Eduardo Fonseca Alves