Abstract
In this study, we analyzed the hematoimmunological effects of dietary supplementation with immunomodulators (β-glucans + nucleotides) and different levels of vitamins on Nile tilapia (Oreochromis niloticus) after exposure to physical stress. The following four diet treatments were used: diets with indicated vitamin levels (Vitind), diets with Vitind + immunomodulator (Vitind + Immune), diets with high vitamin content (Vithigh), and those with Vithigh + immunomodulator (Vithigh + Immune). The experiment included 560 fish in 28 tanks (20 fish tank-1), with seven replicates per treatment. After 60 days of supplementation, the water temperature was set at 20 °C, and complete biometrics were performed. The animals were then subjected to physical stress with temperature oscillations of 20 °C to 30 °C/30 °C to 20 °C/20 °C to 30 °C. Hematoimmunological data from 140 animals were collected poststress. Antimicrobial titer and total plasma protein levels were significantly higher in fish not receiving immunomodulator-supplemented diets (2.88 ± 0.43 log2 and 26.81 ± 4.01 mg∙mL-1, respectively) than in those that did. Conversely, the agglutination titer increased in fish fed with lower vitamin levels (3.33 ± 0.66 log2) compared to those with higher vitamin levels. Increased immunoglobulin levels were observed in fish fed diets co-supplemented with vitamins and immunomodulators, revealing an interaction between immunomodulators and dietary vitamin levels. In summary, the inclusion of immunomodulators in the diet enhanced the animals’ resistance to physical stress and improved hematoimmunological parameters. Additionally, a high vitamin content in the diet did not modulate the immune responses in the animals.
References
Abdelhamid, F. M., Elshopakey, G. E., & Aziza, A. E. (2020). Ameliorative effects of dietary Chlorella vulgaris and β-glucan against diazinon-induced toxicity in Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 96, 213-222. http://doi.org/10.1016/j.fsi.2019.12.009. PMid:31821844.
Abdelrazek, H. M. A., Tag, H. M., Kilany, O. E., Reddy, P. G., & Hassan, A. M. (2017). Immuomodulatory effect of dietary turmeric supplementation on Nile tilapia (Oreochromis niloticus). Aquaculture Nutrition, 23(5), 1048- 1054. http://doi.org/10.1111/anu.12472.
Abu-Elala, N. M., Younis, N. A., AbuBakr, H. O., Ragaa, N. M., Borges, L. L., & Bonato, M. A. (2018). Efficacy of dietary yeast cell wall supplementation on the nutrition and immune response of Nile tilapia. Egyptian Journal of Aquatic Research, 44(4), 333-341. http://doi.org/10.1016/j.ejar.2018.11.001.
Ai, Q., Mai, K., Zhang, L., Tan, B., Zhang, W., Xu, W., & Li, H. (2007). Effects of dietary β-1, 3 glucan on innate immune response of large yellow croaker, Pseudosciaena crocea. Fish & Shellfish Immunology, 22(4), 394-402. http://doi.org/10.1016/j.fsi.2006.06.011. PMid:16928452.
Akanmu, O. A. (2018). Probiotics, an Alternative Measure to Chemotherapy in Fish Production. In S. Enany (Ed.), Probiotics - Current Knowledge and Future Prospects (pp. 151 – 168). InTech. http://doi.org/10.5772/intechopen.72923
Almeida, D. M., Petesse, M. L., Tachibana, L., Dias, D. C., Moreira, R. G., & Ranzani-Paiva, M. J. T. (2018). Monitoring whole blood, plasma and serum variables of Nile tilapia during 24 hours, after capture stress. Boletim do Instituto de Pesca, 44(4), 1-9. http://doi.org/10.20950/1678-2305.2018.44.4.369.
Altun, T., Tekelioğlu, N., & Danabaş, D. (2006). Tilapia culture and its problems in Turkey. E.U. Su Ürünleri Dergisi, 23(4), 473-478.- http://www.egejfas.org/en/download/article-file/57663.
Amar, E. C., Kiron, V., Satoh, S., Okamoto, N., & Watanabe, T. (2000). Effects of dietary beta-carotene on the immune response of rainbow trout Oncorhynchus mykiss. Fisheries Science, 66(6), 1068-1075. http://doi. org/10.1046/j.1444-2906.2000.00170.x.
Amphan, S., Unajak, S., Printrakoon, C., & Areechon, N. (2019). Feeding-regimen of β-glucan to enhance innate immunity and disease resistance of Nile tilapia, Oreochromis niloticus Linn., against Aeromonas hydrophila and Flavobacterium columnare. Fish & Shellfish Immunology, 87, 120-128. http://doi.org/10.1016/j.fsi.2018.12.062. PMid:30597253.
Aramli, M. S., Kamangar, B., & Nazari, R. M. (2015). Effects of dietary β-glucan on the growth and innate immune response of juvenile Persian sturgeon, Acipenser persicus. Fish & Shellfish Immunology, 47(1), 606-610. http://doi.org/10.1016/j.fsi.2015.10.004. PMid:26453793.
Arshadi, A., Yavari, V., Oujifard, A., Mousavi, S. M., Gisbert, E., & Mozanzadeh, M. T. (2018). Dietary nucleotide mixture effects on reproductive and performance, ovary fatty acid profile and biochemical parameters of female Pacific shrimp (Litopenaeus vannamei). Aquaculture Nutrition, 24(1), 515-523. http://doi.org/10.1111/anu.12584.
Associação Brasileira da Piscicultura – Peixe BR. (2024). Anuário 2024 Peixe BR da Piscicultura. Peixe BR. www. peixebr.com.br
Bagni, M., Romano, N., Finoia, M. G., Abelli, L., Scapigliati, G., Tiscar, P. G., Sarti, M., & Marino, G. (2005). Short- and long-term effects of a dietary yeast β-glucan (Macrogard) and alginic acid (Ergosan) preparation on immune response in sea bass (Dicentrarchus labrax). Fish & Shellfish Immunology, 18(4), 311-325. http://doi.org/10.1016/j. fsi.2004.08.003. PMid:15561561.
Barros, M. M., Falcon, D. R., de Oliveira Orsi, R., Pezzato, L. E., Fernandes Junior, A. C., Guimarães, I. G., Fernandes Junior, A., Padovani, C. R., & Sartori, M. M. P. (2014). Non-specific immune parameters and physiological response of Nile tilapia fed β-glucan and vitamin C for different periods and submitted to stress and bacterial challenge. Fish & Shellfish Immunology, 39(2), 188-195. http://doi.org/10.1016/j.fsi.2014.05.004. PMid:24830771.
Barros, M. M., Falcon, D. R., Orsi, R. O., Pezzato, L. E., Fernandes Junior, A. C., Fernandes Junior, A., de Carvalho, P. L. P. F., Padovani, C. R., Guimarães, I. G., & Sartori, M. M. P. (2015). Immunomodulatory effects of dietary β-glucan and vitamin C in Nile tilapia, Oreochromis niloticus L., subjected to cold-induced stress or bacterial challenge. Journal of the World Aquaculture Society, 46(4), 363-380. http://doi.org/10.1111/jwas.12202.
Barros, M. M., Pezzato, L. E., Kleemann, G. K., Hisano, H., & Rosa, G. J. M. (2002). Níveis de vitamina C e ferro para tilápia do Nilo (Oreochromis niloticus). Revista Brasileira de Zootecnia, 31(6), 2149-2156. http://doi.org/10.1590/ S1516-35982002000900001.
Barroso, R. M., Tenório, R. A., Pedroza Filho, M. X., Webber, D. C., Belchior, L. S., Tahim, E. F., Carmo, F. J., & Muehlmann, L. D. (2015). Gerenciamento genético da tilápia nos cultivos comerciais. EMBRAPA.
Baur, F. J., & Ensminger, L. G. (1977). The Association of Official Analytical Chemists (AOAC). Journal of the American Oil Chemists’ Society, 54(4), 171-172. http://doi.org/10.1007/BF02670789.
Berto, R. S., Pereira, G. V., Mouriño, J. L. P., Martins, M. L., & Fracalossi, D. M. (2016). Yeast extract on growth, nutrient utilization and haemato-immunological responses of Nile tilapia. Aquaculture Research, 47(8), 2650-2660. http://doi.org/10.1111/are.12715.
Blaxhall, P. C., & Daisley, K. W. (1973). Routine haematological methods for use with fish blood. Journal of Fish Biology, 5(6), 771-781. http://doi.org/10.1111/j.1095-8649.1973.tb04510.x.
Bowyer, P. H., El‐Haroun, E. R., Hassaan, M., Salim, H., & Davies, S. J. (2019). Dietary nucleotides enhance growth performance, feed efficiency and intestinal functional topography in European Seabass (Dicentrarchus labrax). Aquaculture Research, 50(7), 1921-1930. http://doi.org/10.1111/are.14078.
Brito, J. M., Pontes, T. C., Tsujii, K. M., Araújo, F. E., & Richter, B. L. (2017). Automação na tilapicultura: Revisão de literatura. Nutritime, 14(3), 5053-5062. http://www.nutritime.com.br
Burrells, C., Williams, P. D., & Forno, P. F. (2001). Dietary nucleotides: a novel supplement in fish feeds 1. Effects on resistance to disease in salmonids. Aquaculture (Amsterdam, Netherlands), 199(1-2), 159-169. http://doi.org/10.1016/S0044-8486(01)00577-4.
Chagas, E. C., Pilarski, F., Sakabe, R., & De Moraes, F. R. (2013). Desempenho produtivo e respostas fisiopatológicas de tambaquis alimentados com ração suplementada com β-glucano. Pesquisa Agropecuária Brasileira, 48(8), 899-905. http://doi.org/10.1590/S0100-204X2013000800013.
Ching, J. J., Shuib, A. S., Abdul Majid, N., & Mohd Taufek, N. (2020). Immunomodulatory activity of β‐glucans in fish: Relationship between β‐glucan administration parameters and immune response induced. Aquaculture Research, 52(5), 1824-1845. http://doi.org/10.1111/are.15086.
Dawood, M. A. O., Koshio, S., & Esteban, M. Á. (2018). Beneficial roles of feed additives as immunostimulants in aquaculture: A review. Reviews in Aquaculture, 10(4), 950-974. http://doi.org/10.1111/raq.12209.
Dawood, M. A. O., Koshio, S., El-Sabagh, M., Billah, M. M., Zaineldin, A. I., Zayed, M. M., & Omar, A. A. E. D. (2017). Changes in the growth, humoral and mucosal immune responses following β-glucan and vitamin C administration in red sea bream, Pagrus major. Aquaculture (Amsterdam, Netherlands), 470, 214-222. http://doi.org/10.1016/j.aquaculture.2016.12.036.
Dawood, M. A. O., Metwally, A. E.-S., El-Sharawy, M. E., Atta, A. M., Elbialy, Z. I., Abdel-Latif, H. M. R., & Paray, B. A. (2020). The role of β-glucan in the growth, intestinal morphometry, and immune-related gene and heat shock protein expressions of Nile tilapia (Oreochromis niloticus) under different stocking densities. Aquaculture (Amsterdam, Netherlands), 523, 735205. http://doi.org/10.1016/j.aquaculture.2020.735205.
di Prisco, G., Eastman, J. T., Giordano, D., Parisi, E., & Verde, C. (2007). Biogeography and adaptation of notothenioid fish: Hemoglobin function and globin–gene evolution. Gene, 398(1-2), 143-155. http://doi.org/10.1016/j.gene.2007.02.047. PMid:17553637.
Ding, C., & He, J. (2010). Effect of antibiotics in the environment on microbial populations. Applied Microbiology and Biotechnology, 87(3), 925-941. http://doi.org/10.1007/s00253-010-2649-5. PMid:20508933.
El-Murr, A. E. I., Abd El Hakim, Y., Neamat-Allah, A. N. F., Baeshen, M., & Ali, H. A. (2019). Immune-protective, antioxidant and relative genes expression impacts of β-glucan against fipronil toxicity in Nile tilapia, Oreochromis niloticus. Fish & Shellfish Immunology, 94, 427-433. http://doi.org/10.1016/j.fsi.2019.09.033. PMid:31536766.
El-Nobi, G., Hassanin, M., Khalil, A. A., Mohammed, A. Y., Amer, S. A., Montaser, M. M., & El-sharnouby, M. E. (2021). Synbiotic Effects of Saccharomyces cerevisiae, mannan oligosaccharides, and β-glucan on innate immunity, antioxidant status, and disease resistance of Nile tilapia, Oreochromis niloticus. Antibiotics (Basel, Switzerland), 10(5), 567. http://doi.org/10.3390/antibiotics10050567. PMid:34065896.
El‐Sayed, A.-F. M., & Izquierdo, M. (2021). The importance of vitamin E for farmed fish - A review. Reviews in Aquaculture, 14(2), 688-703. http://doi.org/10.1111/raq.12619.
El-Sayed, A.-F. M., & Kawanna, M. (2008). Optimum water temperature boosts the growth performance of Nile tilapia (Oreochromis niloticus) fry reared in a recycling system. Aquaculture Research, 39(6), 670-672. http://doi.org/10.1111/j.1365-2109.2008.01915.x.
El-Sayed, A.-F. M. (2005). Tilapia culture (2nd ed.). CABI. www.elsevier.com/books-and-journals
Facimoto, C. T., Chideroli, R. T., Gonçalves, D. D., do Carmo, A. O., Kalaphotakis, E., & Pereira, U. DE P. (2017). Whole-Genome Sequence of Streptococcus agalactiae strain S13, isolated from a fish eye from a Nile tilapia farm in Southern Brazil. Genome Announcements, 5(35), e00917-17. http://doi.org/10.1128/genomeA.00917-17. PMid:28860260.
Falcon, D. R., Barros, M. M., Pezzato, L. E., & Valle, J. D. B. (2007). Lipid and vitamin C in practical diets preparatory for winter for Nile tilapia. Revista Brasileira de Zootecnia, 36(5, Suppl.), 1462-1472. http://doi.org/10.1590/ S1516-35982007000700002.
Fegan, D. F. (2006). Functional foods for aquaculture: benefits of NuPro® and dietary nucleotides in aquaculture feeds. In T. P. Lyons, K. A. Jacques, & J. M. Hower (Eds.), Biotecnologia Nutricional nas Indústrias de Rações e Alimentos (pp. 419-432). Alltech.
Fernandes Junior, A. C., Pezzato, L. E., Guimarães, I. G., Teixeira, C. P., Koch, J. F. A., & Barros, M. M. (2010). Resposta hemática de tilápias-do-nilo alimentadas com dietas suplementadas com colina e submetidas a estímulo por baixa temperatura. Revista Brasileira de Zootecnia, 39(8), 1619-1625. http://doi.org/10.1590/ S1516-35982010000800001.
Figueiredo, H. C. P., & Leal, C. A. G. (2008). Tecnologias aplicadas em sanidade de peixes. Revista Brasileira de Zootecnia, 37(spe), 8-14. http://doi.org/10.1590/S1516-35982008001300002.
Furuya, W. M. (2010). Tabelas Brasileiras para a Nutrição de Tilápias. GFM.
Gil, A. (2002). Modulation of the immune response mediated by dietary nucleotides. European Journal of Clinical Nutrition, 56(Suppl. 3), S1-S4. http://doi.org/10.1038/sj.ejcn.1601475. PMid:12142952.
Goldenfarb, P. B., Bowyer, F. P., Hall, E., & Brosious, E. (1971). Reproducibility in the hematology laboratory: The microhematocrit determination. American Journal of Clinical Pathology, 56(1), 35-39. http://doi.org/10.1093/ajcp/56.1.35. PMid:5556212.
Guimarães, I. G., Lim, C., Yildirim-Aksoy, M., Li, M. H., & Klesius, P. H. (2014). Effects of dietary levels of vitamin A on growth, hematology, immune response and resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae. Animal Feed Science and Technology, 188, 126-136. http://doi.org/10.1016/j.anifeedsci.2013.12.003.
Hassaan, M. S., Mahmoud, S. A., Jarmolowicz, S., El‐Haroun, E. R., Mohammady, E. Y., & Davies, S. J. (2018). Effects of dietary baker’s yeast extract on the growth, blood indices and histology of Nile tilapia (Oreochromis niloticus L.) fingerlings. Aquaculture Nutrition, 24(6), 1709-1717. http://doi.org/10.1111/anu.12805.
Hossain, M., Koshio, S., Ishikawa, M., Yokoyama, S., & Sony, N. M. (2016). Dietary nucleotide administration influences growth, immune responses and oxidative stress resistance of juvenile red sea bream (Pagrus major). Aquaculture (Amsterdam, Netherlands), 455, 41-49. http://doi.org/10.1016/j.aquaculture.2016.01.008.
Koch, J. F. A., de Oliveira, C. A. F., & Zanuzzo, F. S. (2021). Dietary β-glucan (MacroGard®) improves innate immune responses and disease resistance in Nile tilapia regardless of the administration period. Fish & Shellfish Immunology, 112, 56-63. http://doi.org/10.1016/j.fsi.2021.02.014. PMid:33640538.
Kraemer, S. A., Ramachandran, A., & Perron, G. G. (2019). Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms, 7(6), 180. http://doi.org/10.3390/microorganisms7060180. PMid:31234491.
Kubitza, F. (2006). Atenção no manejo dos peixes na saída do inverno. Panorama da Aquicultura, 30-37.
Leira, M. H., Cunha, L. T., Braz, M. S., Melo, C. C. V., Botelho, H. A., & Reghim, L. S. (2017). Qualidade da água e seu uso em pisciculturas. Pubvet, 11(1), 11-17. http://doi.org/10.22256/pubvet.v11n1.11-17.
Li, P., Zhao, J., & Gatlin 3rd, D. M. (2015). Dietary nutrients, additives, and fish health. In: C.-S. Lee, C. Lim, D. M. Gatlin 3rd, & C. D. Webster (Eds.), Dietary Nutrients, Additives, and Fish Health (pp. 249-269). John Wiley & Sons.
Lim, C., Klesius, P. H., Li, M. H., & Robison, E. H. (2000). Interaction between dietary levels of iron andvitamin C on growth, hematology, immune response and resistance of channel catfish (Ictalurus punctatus) to Edwardsiella ictaluri challenge. Aquaculture (Amsterdam, Netherlands), 185(3-4), 313-327. http://doi.org/10.1016/ S0044-8486(99)00352-X.
Lim, C., Yildirim-Aksoy, M., Li, M. H., Welker, T. L., & Klesius, P. H. (2009). Influence of dietary levels of lipid and vitamin E on growth and resistance of Nile tilapia to Streptococcus iniae challenge. Aquaculture (Amsterdam, Netherlands), 298(1-2), 76-82. http://doi.org/10.1016/j.aquaculture.2009.09.025.
Lim, C., Yildirim-Aksoy, M., Welker, T., Klesius, P. H., & Li, M. H. (2010). Growth Performance, Immune Response, and Resistance to Streptococcus iniae of Nile Tilapia, Oreochromis niloticus, Fed Diets Containing Various Levels of Vitamins C and E. Journal of the World Aquaculture Society, 41(1), 35-48. http://doi. org/10.1111/j.1749-7345.2009.00311.x.
Lin, S., Pan, Y., Luo, L., & Luo, L. (2011). Effects of dietary β-1,3-glucan, chitosan or raffinose on the growth, innate immunity and resistance of koi (Cyprinus carpio koi). Fish & Shellfish Immunology, 31(6), 788-794. http://doi.org/10.1016/j.fsi.2011.07.013. PMid:21784160.
Lu, D. L., Limbu, S. M., Lv, H. B., Ma, Q., Chen, L. Q., Zhang, M. L., & Du, Z. Y. (2019). The comparisons in protective mechanisms and efficiencies among dietary α-lipoic acid, β-glucan and L-carnitine on Nile tilapia infected by Aeromonas hydrophila. Fish & Shellfish Immunology, 86, 785-793. http://doi.org/10.1016/j.fsi.2018.12.023. PMid:30553889.
Magnadottir, B. (2010). Immunological control of fish diseases. Marine Biotechnology (New York, N.Y.), 12(4), 361-379. http://doi.org/10.1007/s10126-010-9279-x. PMid:20352271.
Mazur, A., Green, S., & Carleton, A. (1960). Mechanism of plasma iron incorporation into hepatic ferritin. The Journal of Biological Chemistry, 235(3), 595-603. http://doi.org/10.1016/S0021-9258(19)67911-1.
McDowell, L. R. (2000). Vitamins in animal and human nutrition (2nd ed.). Iowa State University Press.. http:// doi.org/10.1002/9780470376911.
Melo, D. C., Oliveira, D. A. A., Melo, M. M., Júnior, D. V., Teixeira, E. A., & Guimarães, S. R. (2009). Perfil proteico de tilápia nilótica chitralada (Oreochromis niloticus), submetida ao estresse crônico por hipóxia. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 61(5), 1183-1190. http://doi.org/10.1590/S0102-09352009000500022.
Miest, J. J., Arndt, C., Adamek, M., Steinhagen, D., & Reusch, T. B. H. (2016). Dietary β-glucan (MacroGard®) enhances survival of first feeding turbot (Scophthalmus maximus) larvae by altering immunity, metabolism and microbiota. Fish & Shellfish Immunology, 48, 94-104. http://doi.org/10.1016/j.fsi.2015.11.013. PMid:26564474.
Misra, C. K., Das, B. K., Mukherjee, S. C., & Pattnaik, P. (2006). Effect of long term administration of dietary β-glucan on immunity, growth and survival of Labeo rohita fingerlings. Aquaculture (Amsterdam, Netherlands), 255(1- 4), 82-94. http://doi.org/10.1016/j.aquaculture.2005.12.009.
Moreira, C. (2014). Linfócitos. Revista de Ciência Elementar, 2(1), 091. http://doi.org/10.24927/rce2014.091.
Murthy, H. S., Li, P., Lawrence, A. L., & Gatlin 3rd, D. M. (2009). Dietary β-Glucan and nucleotide effects on growth, survival and immune responses of pacific white shrimp, Litopenaeus vannamei. Journal of Applied Aquaculture, 21(3), 160-168. http://doi.org/10.1080/10454430903113644.
Nakamura, O., Watanabe, T., Kamiya, H., & Muramoto, K. (2001). Galectin containing cells in the skin and mucosal tissues in Japanese conger eel, Conger myriaster: An immunohistochemical study. Developmental and Comparative Immunology, 25(5-6), 431-437. https://doi.org/10.1016/S0145-305X(01)00012-X.
Neamat‐Allah, A. N. F., El-Hakim, Y. A., & Mahmoud, E. A. (2020). Alleviating effects of β‐glucan in Oreochromis niloticus on growth performance, immune reactions, antioxidant, transcriptomics disorders and resistance to Aeromonas sobria caused by atrazine. Aquaculture Research, 51(5), 1801-1812. http://doi.org/10.1111/are.14529.
Nelson, DL & Cox, MM. (2018). I principi di biochimica di Lehninger (7ª ed.). Zanichelli.. online.universita.zanichelli. it/nelson-7e.
Nobrega, R. O., Banze, J. F., Batista, R. O., & Fracalossi, D. M. (2020). Improving winter production of Nile tilapia: What can be done? Aquaculture Reports, 18, 100453. http://doi.org/10.1016/j.aqrep.2020.100453.
Nutrient Requirements of Fish – NRC. (2011). Nutrient requirements of fish and shrimp (2nd ed.). National Academies Press. http://doi.org/10.17226/13039.
Owatari, M. S., Jesus, G. F. A., Brum, A., Pereira, S. A., Lehmann, N. B., Pereira, U. P., Martins, M. L., & Mouriño, J. L. P. (2018). Sylimarin as hepatic protector and immunomodulator in Nile tilapia during Streptococcus agalactiae infection. Fish & Shellfish Immunology, 82, 565-572. http://doi.org/10.1016/j.fsi.2018.08.061. PMid:30176337.
Penney, J., Lu, Y., Pan, B., Feng, Y., Walk, C., & Li, J. (2019). Pure yeast beta-glucan and two types of yeast cell wall extracts enhance cell migration in porcine intestine model. Journal of Functional Foods, 59, 129-137. http://doi.org/10.1016/j.jff.2019.05.037.
Peres, H., Lim, C., & Klesius, P. H. (2004). Growth, chemical composition and resistance to Streptococcus iniae challenge of juvenile Nile tilapia (Oreochromis niloticus) fed graded levels of dietary inositol. Aquaculture (Amsterdam, Netherlands), 235(1-4), 423-432. http://doi.org/10.1016/j.aquaculture.2003.09.021.
Phu, T. M., Ha, N. T. K., Tien, D. T. M., Tuyen, T. S., & Huong, D. T. T. (2016). Effect of beta-glucans on hematological, immunoglobulins and stress parameters of striped catfish (Pangasianodon hypophthalmus) fingerling. Can Tho University Journal of Science, 04, 105-113. http://doi.org/10.22144/ctu.jen.2016.050.
Pohlenz, C., & Gatlin 3rd, D. M. (2014). Interrelationships between fish nutrition and health. Aquaculture (Amsterdam, Netherlands), 431, 111-117. http://doi.org/10.1016/j.aquaculture.2014.02.008.
Prabu, E., Rajagopalsamy, C. B. T., Ahilan, B., Jeevagan, I. J. M. A., & Renuhadevi, M. (2019). Tilapia – an excellent candidate species for world aquaculture: A review. Annual Research & Review in Biology, 1-14. http://doi.org/10.9734/arrb/2019/v31i330052.
Ranzani-Paiva, M. J., Pádua, S. B., Tavares-Dias, M., & Egami, M. I. (2013). Métodos para análise hematológica em peixes. EDUEM. http://doi.org/10.7476/9788576286530.
Rauta, P. R., Nayak, B., & Das, S. (2012). Immune system and immune responses in fish and their role in comparative immunity study: A model for higher organisms. Immunology Letters, 148(1), 23-33. http://doi.org/10.1016/j.imlet.2012.08.003. PMid:22902399.
Reda, R. M., Selim, K. M., Mahmoud, R., & El-Araby, I. E. (2018). Effect of dietary yeast nucleotide on antioxidant activity, non-specific immunity, intestinal cytokines, and disease resistance in Nile Tilapia. Fish & Shellfish Immunology, 80, 281-290. http://doi.org/10.1016/j.fsi.2018.06.016. PMid:29894741.
Ringø, E., Erik Olsen, R., Gonzalez Vecino, J. L., & Wadsworth, S. (2012). Use of immunostimulants and nucleotides in aquaculture: A review. Journal of Marine Science: Research & Development, 2, 104. http://doi. org/10.4172/2155-9910.1000104.
Ringø, E., Zhou, Z., Vecino, J. L. G., Wadsworth, S., Romero, J., Krogdahl, Å., Olsen, R. E., Dimitroglou, A., Foey, A., Davies, S., Owen, M., Lauzon, H. L., Martinsen, L. L., De Schryver, P., Bossier, P., Sperstad, S., & Merrifield, D. L. (2016). Effect of dietary components on the gut microbiota of aquatic animals. A never ending story? Aquaculture Nutrition, 22(2), 219-282. http://doi.org/10.1111/anu.12346.
Rodrigues, G. M., Nascimento, F. G. DE O., Bizare, A., Oliveira, W. J., Guimarães, E. C., & Mundim, A. V. (2018). Serum biochemical profile of Nile tilapias (Oreochromis niloticus) bred in net cages during summer and winter. Acta Scientiae Veterinariae, 46(1), 8. http://doi.org/10.22456/1679-9216.81814.
Rossi, P., Xavier, E., & Rutz, F. (2007). Nucleotídeos na nutrição animal. Revista Brasileira de Agrociência, 13(1), 5-12. https://www.researchgate.net/publication/28227982
Sado, R. Y., Gimbo, R. Y., & Salles, F. B. (2016). Routes of β-glucan administration affect hematological and immune responses of Oreochromis niloticus. Archivos de Zootecnia, 65(252), 519-524. https://www.uco.es/ ucopress/az/index.php/az/
Sakai, M. (1999). Current research status of fish immunostimulants. Aquaculture (Amsterdam, Netherlands), 172(1-2), 63-92. http://doi.org/10.1016/S0044-8486(98)00436-0.
Selim, K. M., & Reda, R. M. (2015). Beta-glucans and mannan oligosaccharides enhance growth and immunity in Nile tilapia. North American Journal of Aquaculture, 77(1), 22-30. http://doi.org/10.1080/15222055.2014.951812.
Sherif, A. H., & Mahfouz, M. E. (2019). Immune status of Oreochromis niloticus experimentally infected with Aeromonas hydrophila following feeding with 1, 3 β-glucan and levamisole immunostimulants. Aquaculture (Amsterdam, Netherlands), 509, 40-46. http://doi.org/10.1016/j.aquaculture.2019.05.016.
Silva, B. C., & Marchiori, N. (2018). Importância do manejo alimentar na criação de tilápia. EPAGRI.
Silva, B. C., Martins, M. L., Jatobá, A., Buglione Neto, C. C., Vieira, F. N., Pereira, G. V., Jerônimo, P. G., Seiffert, W. Q., & Mouruño, J. L. P. (2009). Hematological and immunological responses of Nile tilapia after polyvalent vaccine administration by different routes. Pesquisa Veterinária Brasileira, 29(11), 874-880. http://doi.org/10.1590/ S0100-736X2009001100002.
Silva, L. R., Rodhermel, J. C. B., Andrade, J. I. A., Pereira, M. O., Chaaban, A., Bertoldi, F. C., & Jatobá, A. (2021). Antiparasitic effect of Mentha × villosa hydrolate against monogenean parasites of the Nile tilapia. Ciência Rural, 51(10), e20190980. http://doi.org/10.1590/0103-8478cr20190980.
Siqueira, R. P., Mello, S. C. R. P., Jorge, T. B. F., Seixas Filho, J. T., & Pereira, M. M. (2021). Viabilidade econômica da produção da tilápia do Nilo como atividade secundária em propriedades rurais no Estado do Rio de Janeiro. Research, Society and Development, 10(2), e38010212502. http://doi.org/10.33448/rsd-v10i2.12502.
Souza, F. P., de Lima, E. C. S., Pandolfi, V. C. F., Leite, N. G., Furlan‐Murari, P. J., Leal, C. N. S., Mainardi, R. M., Suphoronski, S. A., Favero, L. M., Koch, J. F. A., Pereira, U. P., & Lopera-Barrero, N. M. (2020). Effect of β-glucan in water on growth performance, blood status and intestinal microbiota in tilapia under hypoxia. Aquaculture Reports, 17, 100369. http://doi.org/10.1016/j.aqrep.2020.100369.
Swain, P. (2006). P. Swain, P.K. Sahoo, S. Ayyappan. Fish and Shellfish Immunology: An Introduction, Narendra Publishing House, 1417, Kishan Dutt Street, Mali-Wara, Delhi-110006, India, 2006, ISBN 81-85375-90-9. Fish & Shellfish Immunology, 21(4), 472. http://doi.org/10.1016/j.fsi.2006.01.007.
Tahmasebi-Kohyani, A., Keyvanshokooh, S., Nematollahi, A., Mahmoudi, N., & Pasha-Zanoosi, H. (2012). Effects of dietary nucleotides supplementation on rainbow trout (Oncorhynchus mykiss) performance and acute stress response. Fish Physiology and Biochemistry, 38(2), 431-440. http://doi.org/10.1007/s10695-011-9524-x. PMid:21671024.
Tasumi, S., Yang, W.-J., Usami, T., Tsutsui, S., Ohira, T., Kawazoe, I., Wilder, M. N., Aida, K., & Suzuki, Y. (2004). Characteristics and primary structure of a galectin in the skin mucus of the Japanese eel, Anguilla japonica. Developmental and Comparative Immunology, 28(4), 325-335. http://doi.org/10.1016/j.dci.2003.08.006. PMid:14698218.
Uribe, C., Folch, H., Enriquez, R., & Moran, G. (2011). Innate and adaptive immunity in teleost fish: A review. Veterinarni Medicina, 56(10), 486-503. http://doi.org/10.17221/3294-VETMED.
Vetvicka, V., Vannucci, L., & Sima, P. (2013). The effects of β - glucan on fish immunity. North American Journal of Medical Sciences, 5(10), 580-588. http://doi.org/10.4103/1947-2714.120792. PMid:24350069.
Vornholt, W., Hartmann, M., & Keusgen, M. (2007). SPR studies of carbohydrate–lectin interactions as useful tool for screening on lectin sources. Biosensors & Bioelectronics, 22(12), 2983-2988. http://doi.org/10.1016/j. bios.2006.12.021. PMid:17261364.
Wang, A., Ran, C., Wang, Y., Zhang, Z., Ding, Q., Yang, Y., Olsen, R. E., Ringø, E., Bindelle, J., & Zhou, Z. (2019). Use of probiotics in aquaculture of China: A review of the past decade. Fish & Shellfish Immunology, 86, 734-755. http://doi.org/10.1016/j.fsi.2018.12.026. PMid:30553887.
Watts, J. E. M., Schreier, H. J., Lanska, L., & Hale, M. S. (2017). The rising tide of antimicrobial resistance in aquaculture: sources, sinks and solutions. Marine Drugs, 15(6), 158. http://doi.org/10.3390/md15060158. PMid:28587172.
Wismar, R., Brix, S., Frøkiaer, H., & Laerke, H. N. (2010). Dietary fibers as immunoregulatory compounds in health and disease. Annals of the New York Academy of Sciences, 1190(1), 70-85. http://doi.org/10.1111/j.1749- 6632.2009.05256.x. PMid:20388138.
Wu, B., Wang, Q., Cao, J., Mei, J., & Xie, J. (2020). Effects of ascorbic acid and β-1,3-glucan on survival, physiological response and flesh quality of cultured tiger grouper (Epinephelus fuscoguttatus) during simulated transport in water. Biology (Basel), 9(2), 37. http://doi.org/10.3390/biology9020037. PMid:32098052.
Xu, L., Ran, C., He, S., Zhang, J., Hu, J., Yang, Y., Du, Z., Yang, Y., & Zhou, Z. (2015). Effects of dietary yeast nucleotides on growth, non-specific immunity, intestine growth and intestinal microbiota of juvenile hybrid tilapia Oreochromis niloticus × Oreochromis aureus. Animal Nutrition, 1(3), 244-251. http://doi.org/10.1016/j. aninu.2015.08.006. PMid:29767139.
Yamamoto, F. Y., Yin, F., Rossi Junior, W., Hume, M., & Gatlin 3rd, D. M. (2018). β-1,3 glucan derived from Euglena gracilis and AlgamuneTM enhances innate immune responses of red drum (Sciaenops ocellatus L.). Fish & Shellfish Immunology, 77, 273-279. http://doi.org/10.1016/j.fsi.2018.04.003. PMid:29625243.
Zadinelo, I. V., Carneiro, W. F., Balen, R. E., Oenning, J. P., & Meurer, F. (2020). Avaliação de rações comerciais para a tilápia do Nilo durante o período de outono/inverno. Nutritime, 17(3), 8717-8721. http://www.nutritime.com.br
Zanolo, B., & Yamamura, H. (2006). Parasitas em tilápias-do-nilo criadas em sistema de tanques-rede. Ciências Agrárias, 27(2), 281-288. http://www.redalyc.org/articulo.oa?id=445744080016
Zerai, D. B., Fitzsimmons, K. M., & Collier, R. J. (2010). Transcriptional response of delta-9-desaturase gene to acute and chronic cold stress in Nile tilapia, Oreochromis niloticus. Journal of the World Aquaculture Society, 41(5), 800-806. http://doi.org/10.1111/j.1749-7345.2010.00422.x.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 Domickson Silva Costa, Scheila Anelise Pereira Dutra, Iracema Lima Pereira, Lucas Cardoso, Paula Brando de Medeiros, Liseth Vanessa Perenguez Riofrio, Maria Clara Miguel Libanori, Tiago Augusto Soligo, Eduardo Yamashita, Ulisses de Pádua Pereira, José Luiz Pedreira Mourinõ, Maurício L. Martins