Antimicrobial therapy approaches in the mastitis control driven by one health insights
PDF
XML

Keywords

dairy production, WHO, superbugs, mastitis.

How to Cite

de Souza, M. M. S., Dubenczuk, F. C., Melo, D. A., Holmström, T. C. N., Mendes, M. B., Reinoso, E. B., … Coelho, I. S. (2024). Antimicrobial therapy approaches in the mastitis control driven by one health insights. Brazilian Journal of Veterinary Medicine, 46, e002624. https://doi.org/10.29374/2527-2179.bjvm002624

Abstract

The use of antimicrobials in the dairy production environment for mastitis control must take etiology, clinical signs, economic impacts, and regulatory frameworks into consideration. The objective of the present review is to highlight important aspects of the dynamics of antimicrobial use in dairy production and the potential impacts on the main pathogens circulating in this environment, considering the parameters set by the World Health Organization (WHO) regarding the priority of monitoring as well as control strategies for these agents, such as the methicillin-resistant Staphylococcus and the beta-lactamase-producing Escherichia coli. Understanding the animal-environment-pathogen triad is crucial for establishing control measures and preventing the spread of bacterial resistance. Implementing mastitis prevention and control measures in dairy farms, considering process flow and personnel qualification, enables a reduction in antimicrobial usage and contributes to prevent the spread of resistant bacterial agents in the dairy production environment, minimizing the relapses and the chronicity of the infectious process.

https://doi.org/10.29374/2527-2179.bjvm002624
PDF
XML

References

Abril, A. G., Villa, T. G., Barros-Velázquez, J., Cañas, B., Sánchez-Pérez, A., Calo-Mata, P., & Carrera, M. (2020). Staphylococcus aureus exotoxins and their detection in the dairy industry and mastitis. Toxins, 12(9), 537. http://doi.org/10.3390/toxins12090537. PMid:32825515.

Abureema, S., Smooker, P., Malmo, J., & Deighton, M. (2014). Molecular epidemiology of recurrent clinical mastitis due to Streptococcus uberis: Evidence of both an environmental source and recurring infection with the same strain. Journal of Dairy Science, 97(1), 285-290. http://doi.org/10.3168/jds.2013-7074. PMid:24239086.

Ajose, D. J., Oluwarinde, B. O., Abolarinwa, T. O., Fri, J., Montso, K. P., Fayemi, O. E., Aremu, A. O., & Ateba, C. N. (2022). Combating bovine mastitis in the dairy sector in an era of antimicrobial resistance: Ethno-veterinary medicinal option as a viable alternative approach. Frontiers in Veterinary Science, 9, 800322. http://doi. org/10.3389/fvets.2022.800322. PMid:35445101.

Alencar, T. A., Mendonça, E. C. L., Marques, V. F., Melo, D. A., Rojas, A. C. M., Motta, C. C., Santiago, G. S., Dubenczuk, F. C., Medeiros, P. T. C., Coelho, S. M. O., & Souza, M. M. S. (2014). Aspectos das condições higiênico-sanitárias em unidades leiteiras em municípios do estado do Rio de Janeiro, Brasil e análise dos agentes bacterianos envolvidos na etiologia das mastites. Brazilian Journal of Veterinary Medicine, 36(2), 199-208.

Alves, A. P. P., Amaral, M. P., Silva, D. C. N., Souza, R. F. S., Reis, S. A. G. B., Silva Júnior, F. A. G., Oliveira, H. P., Peixoto, R. M., Costa, M. M. (2023). Efficacy assessment of an intramammary formulation based on soluble polypyrrole in cows with experimentally induced mastitis. Ciência Rural, 53(9), e20220047. http://doi. org/10.1590/0103-8478cr20220047.

Azooz, M. F., El-Wakeel, S. A., & Yousef, H. M. (2020). Financial and economic analyses of the impact of cattle mastitis on the profitability of Egyptian dairy farms. Veterinary World, 13(9), 1750-1759. http://doi.org/10.14202/vetworld.2020.1750-1759. PMid:33132585.

Bhakat, C., Mohammad, A., Mandal, D. K., Mandal, A., Rai, S., Chatterjee, A., Ghosh, M. K., & Dutta, T. K. (2020). Readily usable strategies to control mastitis for production augmentation in dairy cattle: A review. Veterinary World, 13(11), 2364-2370. http://doi.org/10.14202/vetworld.2020.2364-2370. PMid:33363328.

Blackmon, M. M., Nguyen, H., & Mukherji, P. (2024). Acute Mastitis. In: StatPearls. StatPearls. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK557782/

Brasil, Ministério da Agricultura, Pecuária e Abastecimento. (2002). Aprovar os Regulamentos Técnicos de Produção, Identidade e Qualidade do Leite tipo A, do Leite tipo B, do Leite tipo C, do Leite Pasteurizado e do Leite Cru Refrigerado e o Regulamento Técnico da Coleta de Leite Cru Refrigerado e seu Transporte a Granel (Instrução Normativa - 51, de 18/09/2002). Diário Oficial da República Federativa do Brasil.

Brasil, Ministério da Agricultura, Pecuária e Abastecimento. (2011). Aprovar o Regulamento Técnico de Produção, Identidade e Qualidade do Leite tipo A, o Regulamento Técnico de Identidade e Qualidade de Leite Cru Refrigerado, o Regulamento Técnico de Identidade e Qualidade de Leite Pasteurizado e o Regulamento Técnico da Coleta de Leite Cru Refrigerado e seu Transporte a Granel, em conformidade com os Anexos desta Instrução Normativa (Instrução Normativa nº 62, de 29 de Dezembro de 2011). Diário Oficial da República Federativa do Brasil.

Brasil, Ministério da Agricultura, Pecuária e Abastecimento. (2018a). Ficam aprovados os Regulamentos Técnicos que fixam a identidade e as características de qualidade que devem apresentar o leite cru refrigerado, o leite pasteurizado e o leite pasteurizado tipo A, na forma desta Instrução Normativa e do Anexo Único (Instrução Normativa nº 76, de 26 de Novembro de 2018). Diário Oficial da República Federativa do Brasil.

Brasil, Ministério da Agricultura, Pecuária e Abastecimento. (2018b). Ficam estabelecidos os critérios e procedimentos para a produção, acondicionamento, conservação, transporte, seleção e recepção do leite cru em estabelecimentos registrados no serviço de inspeção oficial, na forma desta Instrução Normativa e do seu Anexo (Instrução Normativa nº 77, de 26 de Novembro de 2018). Diário Oficial da República Federativa do Brasil.

Brasil, Agência Nacional de Vigilância Sanitária. (2019a). Dispõe sobre a avaliação do risco à saúde humana de medicamentos veterinários e os métodos de análise para fins de avaliação da conformidade (Resolução da Diretoria Colegiada - RDC nº 328, de 19 de Dezembro de 2019). Diário Oficial da República Federativa do Brasil.

Brasil, Agência Nacional de Vigilância Sanitária. (2019b). Estabelece a lista de limites máximos de resíduos (LMR), ingestão diária aceitável (IDA) e dose de referência aguda (DRfA) para insumos farmacêuticos ativos (IFA) de medicamentos veterinários em alimentos de origem animal (Instrução Normativa n° 51, de 19 de Dezembro de 2019). Diário Oficial da República Federativa do Brasil.

Brasil, Ministério da Agricultura, Pecuária e Abastecimento. (2023). Mapa do leite: Política públicas e privadas para o leite. MAPA. https://www.gov.br/agricultura/pt-br/assuntos/producao-animal/mapa-do-leite

Bronzato, G. F., Rodrigues, N. M. B., Pribul, B. R., Santiago, G. S., Coelho, I. S., Souza, M. M. S., Reinoso, E., Lasagno, M., Coelho, S. M. O. (2017). Genotypic characterization of Escherichia coli strains isolated from dairy cattle environment. African Journal of Microbiological Research, 11(47), 1669-1675. https://doi.org/10.5897/AJMR2017.8677.

Caneschi, A., Bardhi, A., Barbarossa, A., & Zaghini, A. (2023). The use of antibiotics and antimicrobial resistance in veterinary medicine, a complex phenomenon: A narrative review. Antibiotics (Basel, Switzerland), 12(3), 487. http://doi.org/10.3390/antibiotics12030487. PMid:36978354.

Cheng, J., Qu, W., Barkema, H. W., Nobrega, D. B., Gao, J., Liu, G., De Buck, J., Kastelic, J. P., Sun, H., & Han, B. (2019). Antimicrobial resistance profiles of 5 common bovine mastitis pathogens in large Chinese dairy herds. Journal of Dairy Science, 102(3), 2416-2426. http://doi.org/10.3168/jds.2018-15135. PMid:30639013.

Cheng, W. N., & Han, S. G. (2020). Bovine mastitis: Risk factors, therapeutic strategies, and alternative treatments—A review. Asian-Australasian Journal of Animal Sciences, 33(11), 1699-1713. http://doi.org/10.5713/ajas.20.0156. PMid:32777908.

Cobirka, M., Tancin, V., & Slama, P. (2020). Epidemiology and classification of mastitis. Animals (Basel), 10(12), 2212. http://doi.org/10.3390/ani10122212. PMid:33255907.

Coelho, S. M. O., Pereira, I. A., Soares, L. C., Pribul, B. R., & Souza, M. M. S. (2011). Profile of virulence factors of Staphylococcus aureus isolated from subclinical bovine mastitis in the state of Rio de Janeiro, Brazil. Journal of Dairy Science, 94(7), 3305-3310. http://doi.org/10.3168/jds.2010-3229. PMid:21700015.

Dejyong, T., Chanachai, K., Immak, N., Prarakamawongsa, T., Rukkwamsuk, T., Tago Pacheco, D., & Phimpraphai, W. (2022). An economic analysis of high milk somatic cell counts in dairy cattle in Chiang Mai, Thailand. Frontiers in Veterinary Science, 9, 958163. http://doi.org/10.3389/fvets.2022.958163. PMid:36406083.

Economou, V., & Gousia, P. (2015). Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infection and Drug Resistance, 8, 49-61. http://doi.org/10.2147/IDR.S55778. PMid:25878509.

Ezzat Alnakip, M., Quintela-Baluja, M., Böhme, K., Fernández-No, I., Caamaño-Antelo, S., Calo-Mata, P., & Barros-Velázquez, J. (2014). The immunology of mammary gland of dairy ruminants between healthy and inflammatory conditions. Journal of Veterinary Medicine, 2014, 659801. http://doi.org/10.1155/2014/659801. PMid:26464939.

Fischer-Tenhagen, C., Bohm, D., Finnah, A., Arlt, S., Schlesinger, S., Borchardt, S., Sutter, F., Tippenhauer, C. M., Heuwieser, W., & Venjakob, P. L. (2023). Residue concentrations of cloxacillin in milk after intramammary dry cow treatment considering dry period length. Animals (Basel), 13(16), 2558. http://doi.org/10.3390/ ani13162558. PMid:37627348.

Fredebeul-Krein, F., Schmenger, A., Wente, N., Zhang, Y., & Krömker, V. (2022). Factors associated with the severity of clinical mastitis. Pathogens (Basel, Switzerland), 11(10), 1089. http://doi.org/10.3390/pathogens11101089. PMid:36297146.

Gerber, M., Dürr, S., & Bodmer, M. (2021). Reducing antimicrobial use by implementing evidence-based, management-related prevention strategies in dairy cows in Switzerland. Frontiers in Veterinary Science, 7, 611682. http://doi.org/10.3389/fvets.2020.611682. PMid:33537355.

Gonçalves, J. L., Kamphuis, C., Martins, C. M. M. R., Barreiro, J. R., Tomazi, T., Gameiro, A. H., Hogeveen, H., & dos Santos, M. V. (2018). Bovine subclinical mastitis reduces milk yield and economic return. Livestock Science, 210, 25-32. http://doi.org/10.1016/j.livsci.2018.01.016.

Griffioen, K., Velthuis, A. G. J., Koop, G., & Lam, T. J. G. M., & 1Health4Food—Dutch Mastitis Diagnostics Consortium. (2021). Effects of a mastitis treatment strategy with or without on-farm testing. Journal of Dairy Science, 104(4), 4665-4681. http://doi.org/10.3168/jds.2019-17871. PMid:33663824.

He, W., Ma, S., Lei, L., He, J., Li, X., Tao, J., Wang, X., Song, S., Wang, Y., Wang, Y., Shen, J., Cai, C., & Wu, C. (2020). Prevalence, etiology, and economic impact of clinical mastitis on large dairy farms in China. Veterinary Microbiology, 242, 108570. http://doi.org/10.1016/j.vetmic.2019.108570. PMid:32122584.

Hoque, M. N., Istiaq, A., Clement, R. A., Gibson, K. M., Saha, O., Islam, O. K., & Hossain, M. A. (2020). Insights into the resistome of bovine clinical mastitis microbiome, a key factor in disease complication. Frontiers in Microbiology, 11, 860. http://doi.org/10.3389/fmicb.2020.00860. PMid:32582039.

Jamali, H., Barkema, H. W., Jacques, M., Lavallée-Bourget, E. M., Malouin, F., Saini, V., Stryhn, H., & Dufour, S. (2018). Invited review: Incidence, risk factors, and effects of clinical mastitis recurrence in dairy cows. Journal of Dairy Science, 101(6), 4729-4746. http://doi.org/10.3168/jds.2017-13730. PMid:29525302.

Jeena, S., Venkateswaramurthy, N., & Sambathkumar, R. (2020). Antibiotic residues in milk products: Impacts on human health. Research Journal of Pharmacology and Pharmacodynamics, 12(1), 15-20. http://doi. org/10.5958/2321-5836.2020.00004.X.

Jong, E., McCubbin, K. D., Speksnijder, D., Dufour, S., Middleton, J. R., Ruegg, P. L., Lam, T. J. G. M., Kelton, D. F., McDougall, S., Godden, S. M., Lago, A., Rajala-Schultz, P. J., Orsel, K., De Vliegher, S., Krömker, V., Nobrega, D. B., Kastelic, J. P., & Barkema, H. W. (2023). Invited review: Selective treatment of clinical mastitis in dairy cattle. Journal of Dairy Science, 106(6), 3761-3778. http://doi.org/10.3168/jds.2022-22826. PMid:37080782.

Kour, S., Sharma, N. N. B., Kumar, P., Soodan, J. S., Santos, M. V. D., & Son, Y. O. (2023). Advances in diagnostic approaches and therapeutic management in bovine mastitis. Veterinary Sciences, 10(7), 449. http://doi.org/10.3390/vetsci10070449. PMid:37505854.

Lago, A., Luiz, D., Pearce, D., Tovar, C., & Zaragoza, J. (2016). Effect of the selective treatment of gram-positive clinical mastitis cases versus blanket therapy. Journal of Animal Science, 94(Suppl 5), 75-76. http://doi. org/10.2527/jam2016-0156.

Lees, P., Pelligand, L., Giraud, E., & Toutain, P. L. (2021). A history of antimicrobial drugs in animals: Evolution and revolution. Journal of Veterinary Pharmacology and Therapeutics, 44(2), 137-171. http://doi.org/10.1111/ jvp.12895. PMid:32725687.

Li, X., Xu, C., Liang, B., Kastelic, J. P., Han, B., Tong, X., & Gao, J. (2023). Alternatives to antibiotics for treatment of mastitis in dairy cows. Frontiers in Veterinary Science, 10, 1160350. http://doi.org/10.3389/fvets.2023.1160350. PMid:37404775.

Marques, V. F., Souza, M., de Mendonça, E. C., Alencar, T. A. D., Pribul, B. R., Coelho, S. M. O., & Lasagno, M. (2013). Análise fenotípica e genotípica da virulência de Staphylococcus spp. e de sua dispersão clonal como contribuição ao estudo da mastite bovina. Pesquisa Veterinária Brasileira, 33(2), 161-170. http://doi.org/10.1590/ S0100-736X2013000200005.

Marques, V. F., Motta, C. C., Soares, B. D., Melo, D. A., Coelho, S. M. O., Coelho, I. S., Barbosa, H. S., & Souza, M. M. S. (2017). Biofilm production and beta-lactamic resistance in Brazilian Staphylococcus aureus isolates from bovine mastitis. Brazilian Journal of Microbiology, 48(1), 118-124. http://doi.org/10.1016/j.bjm.2016.10.001.

McCubbin, K. D., de Jong, E., Lam, T. J., Kelton, D. F., Middleton, J. R., McDougall, S., De Vliegher, S., Godden, S., Rajala-Schultz, P. J., Rowe, S., Speksnijder, D. C., Kastelic, J. P., & Barkema, H. W. (2022). Invited review: Selective use of antimicrobials in dairy cattle at drying-off. Journal of Dairy Science, 105(9), 7161-7189. http:// doi.org/10.3168/jds.2021-21455. PMid:35931474.

McDougall, S., Niethammer, J., & Graham, E. M. (2018). Antimicrobial usage and risk of retreatment for mild to moderate clinical mastitis cases on dairy farms following on-farm bacterial culture and selective therapy. New Zealand Veterinary Journal, 66(2), 98-107. http://doi.org/10.1080/00480169.2017.1416692. PMid:29241025.

Melo, D. A., Coelho, I. S., Motta, C. C., Rojas, A. C. C. M., Dubenczuk, F. C., Coelho, S. M. O., & Souza, M. M. S. (2014). Impairments of mecA gene detection in bovine Staphylococcus spp. Brazilian Journal of Microbiology, 45(3), 1075-1082. http://doi.org/10.1590/S1517-83822014000300041. PMid:25477945.

Melo, D. A., Motta, C. C., Rojas, A. C. C. M., Soares, B. S., Coelho, I. S., Coelho, S. M. O., & Souza, M. M. S. (2018). Characterization of Coagulase-Negative Staphylococci and pheno-genotypic beta lactam resistance evaluation in samples from bovine Intramammary infection. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 70(2), 368-374. http://doi.org/10.1590/1678-4162-9209.

Melo, D. A., Soares, B. S., Motta, C. C., Dubenczuck, F. C., Barbieri, N. L., Logue, C. M., Coelho, S. O., Coelho, I. S., & Souza, M. M. S. (2020). Accuracy of PCR universal primer for methicillin-resistant Staphylococcus and comparison of different phenotypic screening assays. Brazilian Journal of Microbiology, 51(1), 403-407. http:// doi.org/10.1007/s42770-019-00171-6. PMid:31664699.

Mendonça, E. C., Marques, V. F., Melo, D. A., Alencar, T. A., Coelho, I. D. S., Coelho, S. M., & Souza, M. (2012). Caracterização fenogenotípica da resistência antimicrobiana em Staphylococcus spp. isolados de mastite bovina. Pesquisa Veterinária Brasileira, 32(9), 859-864. http://doi.org/10.1590/S0100-736X2012000900008.

Morales-Ubaldo, A. L., Rivero-Perez, N., Valladares-Carranza, B., Velázquez-Ordoñez, V., Delgadillo-Ruiz, L., & Zaragoza-Bastida, A. (2023). Bovine mastitis, a worldwide impact disease: Prevalence, antimicrobial resistance, and viable alternative approaches. Veterinary and Animal Science, 21, 100306. http://doi.org/10.1016/j. vas.2023.100306. PMid:37547227.

More, S. J., McAloon, C., Silva Boloña, P., O’Grady, L., O’Sullivan, F., McGrath, M., Buckley, W., Downing, K., Kelly, P., Ryan, E. G., & McCoy, F. (2022). Mastitis control and intramammary antimicrobial stewardship in Ireland: Challenges and opportunities. Frontiers in Veterinary Science, 9, 748353. http://doi.org/10.3389/ fvets.2022.748353. PMid:35498730.

Müller, S., Nitz, J., Tellen, A., Klocke, D., & Krömker, V. (2023). Effect of antibiotic compared to non-antibiotic dry cow treatment on the bacteriological cure of intramammary infections during the dry period: A retrospective cross-sectional study. Antibiotics (Basel, Switzerland), 12(3), 429. http://doi.org/10.3390/antibiotics12030429. PMid:36978296

Murphy, J. M. (1956). Mastitis - the struggle for understanding. Journal of Dairy Science, 39(12), 1768-1773. https://doi.org/10.3168/jds.S0022-0302(56)94925-6.

Niemi, R. E., Hovinen, M., Vilar, M. J., Simojoki, H., & Rajala-Schultz, P. J. (2021). Dry cow therapy and early lactation udder health problems: Associations and risk factors. Preventive Veterinary Medicine, 188, 105268. http://doi. org/10.1016/j.prevetmed.2021.105268. PMid:33530013.

Novac, C. S., & Andrei, S. (2020). The Impact of mastitis on the biochemical parameters, oxidative and nitrosative stress markers in goat’s milk: A review. Pathogens (Basel, Switzerland), 9(11), 882. http://doi.org/10.3390/pathogens9110882. PMid:33114454.

O’Neil, J. (2016). Trackling drug-resistant infections globally: final report and recommendations. The review on antimicrobial resistance. https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf

Osumi, T., Kishimoto, Y., Kano, R., Maruyama, H., Onozaki, M., Makimura, K., Ito, T., Matsubara, K., & Hasegawa, A. (2008). Prototheca zopfii genotypes isolated from cow barns and bovine mastitis in Japan. Veterinary Microbiology, 131(3-4), 419-423. http://doi.org/10.1016/j.vetmic.2008.04.012. PMid:18511222.

Oviedo-Boyso, J., Valdez-Alarcón, J. J., Cajero-Juárez, M., Ochoa-Zarzosa, A., López-Meza, J. E., Bravo-Patiño, A., & Baizabal-Aguirre, V. M. (2007). Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. The Journal of Infection, 54(4), 399-409. http://doi.org/10.1016/j.jinf.2006.06.010. PMid:16882453.

Paramasivam, R., Gopal, D. R., Dhandapani, R., Subbarayalu, R., Elangovan, M. P., Prabhu, B., Veerappan, V., Nandheeswaran, A., Paramasivam, S., & Muthupandian, S. (2023). Is AMR in dairy products a threat to human health? An updated review on the origin, prevention, treatment, and economic impacts of subclinical mastitis. Infection and Drug Resistance, 16, 155-178. http://doi.org/10.2147/IDR.S384776. PMid:36636377.

Parker, A. M., Sheehy, P. A., Hazelton, M. S., Bosward, K. L., & House, J. K. (2018). A review of mycoplasma diagnostics in cattle. Journal of Veterinary Internal Medicine, 32(3), 1241-1252. http://doi.org/10.1111/jvim.15135. PMid:29671903.

Philpot, W. N. (1969). Role of therapy in mastitis control. Journal of Dairy Science, 52(5), 708-713. http://doi.org/10.3168/jds.S0022-0302(69)86633-6. PMid:5391058.

Plastridge, W. N., Anderson, E. O., Weirether, F. J., & Johnson, R. E. (1936). Infectious bovine mastitis: Report on a control ProGram based on segregation of infected animals. Journal of Dairy Science, 19(10), 641-650. http://doi.org/10.3168/jds.S0022-0302(36)93099-0.

Priyanka, P. S., Sheoran, M. S., & Ganguly, S. (2017). Antibiotic residues in milk-a serious public health hazard. Journal of Environment and Life Sciences, 2(4), 99-102.

Rall, V. L. M., Miranda, E. S., Castilho, I. G., Camargo, C. H., Langoni, H., Guimarães, F. F., Araújo Júnior, J. P., & Fernandes Júnior, A. (2014). Diversity of Staphylococcus species and prevalence of enterotoxin genes isolated from milk of healthy cows and cows with subclinical mastitis. Journal of Dairy Science, 97(2), 829-837. http://doi.org/10.3168/jds.2013-7226. PMid:24359821.

Ribeiro, J., Silva, V., Monteiro, A., Vieira-Pinto, M., Igrejas, G., Reis, F. S., Barros, L., & Poeta, P. (2023). Antibiotic resistance among gastrointestinal bacteria in broilers: A review focused on Enterococcus spp. and Escherichia coli. Animals (Basel), 13(8), 1362. http://doi.org/10.3390/ani13081362. PMid:37106925.

Rocha, D. T., Carvalho, G. R., & Resende, J. C. (2020). Cadeia produtiva do leite no Brasil: Produção primária (Circular Técnica, No. 123, 16 p.). EMBRAPA. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/215880/1/CT-123.pdf

Rodrigues, N. M. B., Bronzato, G. F., Santiago, G. S., Botelho, L. A. B., Moreira, B. M., Coelho, I. S., Souza, M. M. S., & Coelho, S. M. O. (2017). The Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) identification versus biochemical tests: A study with enterobacteria from a dairy cattle environment. Brazilian Journal of Microbiology, 48(1), 132-138. http://doi.org/10.1016/j.bjm.2016.07.025. PMid:27818092.

Rodriguez, Z., Cabrera, V. E., Hogeveen, H., & Ruegg, P. L. (2024). Economic impact of treatment of subclinical mastitis in early lactation using intramammary nisin. Journal of Dairy Science. http://doi.org/10.3168/jds.2023- 24311. PMid:38278296.

Rollin, E., Dhuyvetter, K. C., & Overton, M. W. (2015). The cost of clinical mastitis in the first 30 days of lactation: An economic modeling tool. Preventive Veterinary Medicine, 122(3), 257-264. http://doi.org/10.1016/j.prevetmed.2015.11.006. PMid:26596651.

Rowe, S., Kabera, F., Dufour, S., Godden, S., Roy, J. P., & Nydam, D. (2023). Selective dry-cow therapy can be implemented successfully in cows of all milk production levels. Journal of Dairy Science, 106(3), 1953-1967. http://doi.org/10.3168/jds.2022-22547. PMid:36653288.

Różańska, H., Lewtak-Piłat, A., Kubajka, M., & Weiner, M. (2019). Occurrence of enterococci in mastitic cow’s milk and their antimicrobial resistance. Journal of Veterinary Research (Pulawy), 63(1), 93-97. http://doi.org/10.2478/ jvetres-2019-0014. PMid:30989140.

Ruegg, P. L. (2017). A 100-year review: Mastitis detection, management, and prevention. Journal of Dairy Science, 100(12), 10381-10397. http://doi.org/10.3168/jds.2017-13023. PMid:29153171.

Ruegg, P. L. (2018). Making antibiotic treatment decisions for clinical mastitis. The Veterinary Clinics of North America. Food Animal Practice, 34(3), 413-425. http://doi.org/10.1016/j.cvfa.2018.06.002. PMid:30316500.

Ruegg, P. L. (2021). What is success? A narrative review of research evaluating outcomes of antibiotics used for treatment of clinical mastitis. Frontiers in Veterinary Science, 8, 639641. http://doi.org/10.3389/fvets.2021.639641. PMid:33604368.

Ruegg, P. L. (2022). Realities, challenges and benefits of antimicrobial stewardship in dairy practice in the United States. Microorganisms, 10(8), 1626. http://doi.org/10.3390/microorganisms10081626. PMid:36014044.

Safak, T., & Risvanli, A. (2022). Effect of somatic cell count on milk composition and some chemical properties of milk. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 74(6), 1083-1083. http://doi.org/10.1590/1678-4162-12854.

Salam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A., & Alqumber, M. A. A. (2023). Antimicrobial resistance: A growing serious threat for global public health. Healthcare, 11(13), 1946. http://doi.org/10.3390/healthcare11131946.

Santiago, G. S., Coelho, I. S., Farias, B. O., Alencar, T. A., Moreira, A. B., Bronzato, G. F., Souza, M. M. S., Castro, B. G., Ferreira, H. N., & Coelho, S. M. O. (2019). Detection of mutations in AmpC promoter/attenuator gene in Escherichia coli from dairy cows in Rio de Janeiro and Mato Grosso, Brazil. African Journal of Microbiological Research, 13(25), 388-391. http://doi.org/10.5897/AJMR2019.9134.

Santiago, G. S., Motta, C. C., Bronzato, G. F., Goncalves, D., Souza, M. M. S., Coelho, I. S., Ferreira, H. N., & Coelho, S. M. O. (2016). A review: AmpC β-lactamase production in Enterobacteriaceae. The Brazilian Journal of Veterinary Medicine, 38(Suppl 3), 17-30. https://bjvm.org.br/BJVM/article/view/876.

Scherpenzeel, C. G. M., Den Uijl, I. E. M., Van Schaik, G., Riekerink, R. O., Hogeveen, H., & Lam, T. J. G. M. (2016). Effect of different scenarios for selective dry-cow therapy on udder health, antimicrobial usage, and economics. Journal of Dairy Science, 99(5), 3753-3764. http://doi.org/10.3168/jds.2015-9963. PMid:26947289.

Schmenger, A., & Krömker, V. (2020). Characterization, cure rates and associated risks of clinical mastitis in Northern Germany. Veterinary Sciences, 7(4), 170. http://doi.org/10.3390/vetsci7040170. PMid:33153084.

Sharma, C., Rokana, N., Chandra, M., Singh, B. P., Gulhane, R. D., Gill, J. P. S., Ray, P., Puniya, A. K., & Panwar, H. (2018). Antimicrobial resistance: Its surveillance, impact, and alternative management strategies in dairy animals. Frontiers in Veterinary Science, 4, 237. http://doi.org/10.3389/fvets.2017.00237. PMid:29359135.

Sharun, K., Dhama, K., Tiwari, R., Gugjoo, M. B., Iqbal Yatoo, M., Patel, S. K., Pathak, M., Karthik, K., Khurana, S. K., Singh, R., Puvvala, B., Amarpal, Singh, R., Singh, K. P., & Chaicumpa, W. (2021). Advances in therapeutic and managemental approaches of bovine mastitis: A comprehensive review. The Veterinary Quarterly, 41(1), 107-136. http://doi.org/10.1080/01652176.2021.1882713. PMid:33509059.

Silva, K. C., & Lincopan, N. (2012). Epidemiology of extended-spectrum beta-lactamases in Brazil: Clinical impact and implications for agribusiness. Jornal Brasileiro de Patologia e Medicina Laboratorial, 48, 91-99. http://doi.org/10.1590/S1676-24442012000200004.

Silva, N. C. C., Guimarães, F. F., Manzi, M. P., Budri, P. E., Gómez-Sanz, E., Benito, D., Langoni, H., Rall, V. L. M., & Torres, C. (2013). Molecular characterization and clonal diversity of methicillin-susceptible Staphylococcus aureus in milk of cows with mastitis in Brazil. Journal of Dairy Science, 96(11), 6856-6862. http://doi.org/10.3168/ jds.2013-6719. PMid:24054305.

Soares, B. S., Motta, C. C., Barbieri, N. L., Melo, D. A., Gomez, M. A., Alencar, T. A., Coelho, I. S., Coelho, S. M. O., Logue, C. M., & Souza, M. M. S. (2021). Molecular characterization and genetic diversity of Staphylococcus aureus isolates of dairy production farms in Rio de Janeiro, Brazil. Brazilian Journal of Veterinary Medicine, 43(1), e001120. http://doi.org/10.29374/2527-2179.bjvm001120.

Soares, B. S., Melo, D. A., Motta, C. C., Marques, V. F., Coelho, I. S., Coelho, S. M. O., Souza, M. M. S. de. (2017). Characterization of virulence and antibiotic profile and agr typing of Staphylococcus aureus from milk of subclinical mastitis bovine in State of Rio de Janeiro. Arquivo Brasileiro de medicina Veterinaria e Zootecnia, 69(4), 843-850. https://doi.org/10.1590/1678-4162-9260.

Soares, L. C., Pereira, I. A., Pribul, B. R., Oliva, M. S., Coelho, S. M. O., & Souza, M. M. S. (2012). Antimicrobial resistance and detection of mecA and blaZ genes in coagulase-negative Staphylococcus isolated from bovine mastitis. Pesquisa Veterinária Brasileira, 32(8), 692-696. http://doi.org/10.1590/S0100-736X2012000800002.

Song, J., Xiang, W., Wang, Q., Yin, J., Tian, T., Yang, Q., Zhang, M., Ge, G., Li, J., Diao, N., Liu, F., Shi, K., Cai, R., Du, R., & Gong, Q. (2023). Prevalence and risk factors of Klebsiella spp. in milk samples from dairy cows with mastitis: A global systematic review. Frontiers in Veterinary Science, 10, 1143257. http://doi.org/10.3389/ fvets.2023.1143257. PMid:37035815.

Souza, M. M. S., & Dubenczuk, F. C. (2022). Antimicrobial use in Mastitis. In: H. Spinoza, S. L. Górniak & M. M. Bernardi (Orgs.), Phamacology applied for veterinary medicine (7th ed., pp. 603-623). Guanabara Koogan.

Souza, M. M. S., Coelho, S. M. O., Coelho, I. S., Soares, B. S., Motta, C. C., Melo, D. A., Dubenczuk, F. C., Santiago, G. S., Pimenta, R. L., Marques, V. F., & Alencar, T. A. (2016). Antimicrobial resistance in animal production: An overview. Revista Brasileira de Medicina Veterinária, 38(Suppl 3), 136-146. https://bjvm.org.br/BJVM/article/ view/332.

Souza, M. M. S., Coelho, S. M. O., Pereira, I. A., Soares, L. C., Pribul, B. R., & Coelho, I. S. (2012). Antibiotic resistance in Staphylococcus species of animal origin. In M. Pana (Ed.), Antibiotic resistant bacteria-a continuous challenge in the new millennium (pp. 273-303). IntechOpen. http://doi.org/10.5772/28518

Souza, M. M. S., Rocha-de-Souza, C. M., Melo, D. A., Motta, C. C., Pimenta, R. L., Coelho, I. S., & Coelho, S. M. O. (2020). Of animal and men: The importance of animal environment to antimicrobial resistance: A one health approach. In M. Mares, S. H. E. Lim & K.-S. Lai (Eds.), Antimicrobial resistance-a one health perspective (pp. 1-26). IntechOpen. http://doi.org/10.5772/intechopen.92118.

Svennesen, L., Skarbye, A. P., Farre, M., Astrup, L. B., Halasa, T., Krömker, V., Denwood, M., & Kirkeby, C. (2023). Treatment of mild to moderate clinical bovine mastitis caused by gram-positive bacteria: A noninferiority randomized trial of local penicillin treatment alone or combined with systemic treatment. Journal of Dairy Science, 106(8), 5696-5714. http://doi.org/10.3168/jds.2022-22993. PMid:37331876.

Timonen, A., Sammul, M., Taponen, S., Kaart, T., Mõtus, K., & Kalmus, P. (2021). Antimicrobial selection for the treatment of clinical mastitis and the efficacy of penicillin treatment protocols in large Estonian dairy herds. Antibiotics (Basel, Switzerland), 11(1), 44. http://doi.org/10.3390/antibiotics11010044. PMid:35052922.

United States Department of Agriculture. (2023). Dairy: World markets and trade. USDA. https://apps.fas.usda. gov/psdonline/circulars/dairy.pdf

Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences of the United States of America, 112(18), 5649-5654. http://doi.org/10.1073/pnas.1503141112. PMid:25792457.

Vasquez, A. K., Nydam, D. V., Foditsch, C., Wieland, M., Lynch, R., Eicker, S., & Virkler, P. D. (2018). Use of a cultureindependent on-farm algorithm to guide the use of selective dry-cow antibiotic therapy. Journal of Dairy Science, 101(6), 5345-5361. http://doi.org/10.3168/jds.2017-13807. PMid:29605332.

Virto, M., Santamarina-García, G., Amores, G., & Hernández, I. (2022). Antibiotics in dairy production: Where is the problem? Dairy, 3(3), 541-564. http://doi.org/10.3390/dairy3030039.

Wilm, J., Svennesen, L., Østergaard Eriksen, E., Halasa, T., & Krömker, V. (2021). Veterinary treatment approach and antibiotic usage for clinical mastitis in Danish dairy herds. Antibiotics (Basel, Switzerland), 10(2), 189. http://doi.org/10.3390/antibiotics10020189. PMid:33671911.

World Health Organization. (2015). Global action plan on antimicrobial resistance. WHO. https://www.who.int/ publications/i/item/9789241509763.

World Health Organization. (2017a). Guidelines on use of medically important antimicrobials in food-producing animals. WHO.

World Health Organization. (2017b). Stop using antibiotics in healthy animals to prevent the spread of antibiotic resistance. WHO.

World Health Organization. (2017c). WHO publishes list of bacteria for which new antibiotics are urgently needed. WHO. https://www.ecdc.europa.eu/en/news-events/who-publishes-list-bacteria-which-new-antibiotics-are-urgently-neede

Zhang, J., Li, W., Tang, Y., Liu, X., Zhang, H., Zhou, Y., Wang, Y., Xiao, W., & Yu, Y. (2022). Testing two somatic cell count cutoff values for bovine subclinical mastitis detection based on milk microbiota and peripheral blood leukocyte transcriptome profile. Animals (Basel), 12(13), 1694. http://doi.org/10.3390/ani12131694. PMid:35804592.

Zhang, Q. Y., Yan, Z. B., Meng, Y. M., Hong, X. Y., Shao, G., Ma, J. J., Cheng, X. R., Liu, J., Kang, J., & Fu, C. Y. (2021). Antimicrobial peptides: Mechanism of action, activity and clinical potential. Military Medical Research, 8(1), 48. http://doi.org/10.1186/s40779-021-00343-2. PMid:34496967.

Zigo, F., Vasil’, M., Ondrašovičová, S., Výrostková, J., Bujok, J., & Pecka-Kielb, E. (2021). Maintaining optimal mammary gland health and prevention of mastitis. Frontiers in Veterinary Science, 8, 607311. http://doi.org/10.3389/fvets.2021.607311. PMid:33681324

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Miliane Moreira Soares de Souza, Felipe Carlos Dubenczuk, Dayanne Araújo Melo, Thérèsse Camille Nascimento Holmström, Marcela Barlette Mendes, Elina Beatriz Reinoso, Shana Mattos Oliveira Coelho, Irene Silva Coelho