Mesenchymal stem cells in animal reproduction: sources, uses and scenario
PDF
XML

Keywords

mesenchymal stem-cells, MSCs, animal reproduction, cellular therapy.

How to Cite

de Oliveira, A. T., Braga, A. R. F., Miranda, J. R. F., Fantinato-Neto, P., & Ambrósio, C. E. (2024). Mesenchymal stem cells in animal reproduction: sources, uses and scenario. Brazilian Journal of Veterinary Medicine, 46, e002524. https://doi.org/10.29374/2527-2179.bjvm002524

Abstract

Studies regarding mesenchymal stem cells turned up in the 1960’s and this cell type created a great number of questions about its functions and applicability in science and medicine. When used with therapeutic intent, these cells present an inclination to migrate to sites of injury, inflammation or disease, where they secrete bioactive factors that stimulates the synthesis of new tissue. In this context, studies using rodents reported that MSCs promoted positive effects in the ovarian function in mice with premature aging of follicular reserve. In female bovines, experimental stem cell-based therapies have been used to either generate new oocytes with in vitro quality or stimulate such action in vivo. It is also reported, that the intraovarian application of mesenchymal stem cells generates a greater production of embryos in vitro and the production of early and expanded blastocysts. Additionally, analysis of ovarian tissue in animal subjected to treatment showed an increase in the number of developing follicles. Nevertheless, the treatments involving stem cells with different modes of application, different sources and different species were able to act on the hormonal, tissue, cellular and metabolic levels, generating positive results in the recovery and improvement of ovarian functions.

https://doi.org/10.29374/2527-2179.bjvm002524
PDF
XML

References

Alward, K. J., Cockrum, R. R., & Ealy, A. D. (2023). Associations of antral follicle count with fertility in cattle: A review. JDS Communications, 4(2), 132-137. http://doi.org/10.3168/jdsc.2022-0283. PMid:36974207.

Bab, I., Gazit, D., Muhlrad, A., & Shteyer, A. (1988a). Regenerating bone marrow produces a potent growth-promoting activity to osteogenic cells. Endocrinology, 123(1), 345-352. http://doi.org/10.1210/endo-123-1-345. PMid:3164264.

Bab, I., Passi-Even, L., Gazit, D., Sekeles, E., Ashton, B. A., Peylan-Ramu, N., Ziv, I., & Ulmansky, M. (1988b). Osteogenesis in in vivo diffusion chamber cultures of human marrow cells. Bone and Mineral, 4(4), 373-386. PMid:3191291.

Beresford, J. N. (1989). Osteogenic stem cells and the stromal system of bone and marrow. Clinical Orthopaedics and Related Research, 240, 270-280. http://doi.org/10.1097/00003086-198903000-00035. PMid:2645077.

Berling, F., Castro, F. C., & Oliveira, A. C. S. (2022). Influência do estresse calórico na produção in vitro de oócitos e embriões de vacas holandesas de alta produtividade. Ciência Animal Brasileira, 23, e71852E. http://doi.org/10.1590/1809-6891v23e-71852p.

Beyer Nardi, N., & Silva Meirelles, L. (2006). Mesenchymal stem cells: Isolation, in vitro expansion and characterization. Handbook of Experimental Pharmacology, (174), 249-282. http://doi.org/10.1007/3-540- 31265-X_11. PMid:16370331.

Bigham-Sadegh, A., Mirshokraei, P., Karimi, I., Oryan, A., Aparviz, A., & Shafiei-Sarvestani, Z. (2012). Effects of adipose tissue stem cell concurrent with greater omentum on experimental long-bone healing in dog. Connective Tissue Research, 53(4), 334-342. http://doi.org/10.3109/03008207.2012.660585. PMid:22268489.

Billhaq, D. H., & Lee, S. (2023). The functions of reproductive hormones and luteal cell types of ovarian corpus luteum in cows. Preprints. In press. http://doi.org/10.20944/preprints202304.0559.v1.

Brianna, L., Ling, A. P. K., & Wong, Y. P. (2022). Applying stem cell therapy in intractable diseases: A narrative review of decades of progress and challenges. Stem Cell Investigation, 9, 4. http://doi.org/10.21037/sci-2022- 021. PMid:36238449.

Broeckx, S. Y., Seys, B., Suls, M., Vandenberghe, A., Mariën, T., Adriaensen, E., Declercq, J., van Hecke, L., Braun, G., Hellmann, K., & Spaas, J. H. (2019). Equine allogeneic chondrogenic induced mesenchymal stem cells are an effective treatment for degenerative joint disease in horses. Stem Cells and Development, 28(6), 410-422. http://doi.org/10.1089/scd.2018.0061. PMid:30623737.

Butler, S. T., Crowe, A. D., Moore, S. G., & Lonergan, P. (2023). Review: Use of assisted reproduction in seasonalcalving dairy herds. Animal, 17(Suppl 1), 100775. http://doi.org/10.1016/j.animal.2023.100775. PMid:37567682.

Cai, J., Weiss, M. L., & Rao, M. S. (2004). In search of “stemness.”. Experimental Hematology, 32(7), 585-598. http://doi.org/10.1016/j.exphem.2004.03.013. PMid:15246154.

Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9(5), 641-650. http://doi.org/10.1002/jor.1100090504. PMid:1870029.

Caplan, A. I. (2015). Adult mesenchymal stem cells: When, where, and how. Stem Cells International, 2015, 628767. http://doi.org/10.1155/2015/628767. PMid:26273305.

Caplan, A. I. (2017). Mesenchymal stem cells: Time to change the name! Stem Cells Translational Medicine, 6(6), 1445-1451. http://doi.org/10.1002/sctm.17-0051. PMid:28452204.

Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98(5), 1076-1084. http://doi.org/10.1002/jcb.20886. PMid:16619257.

Carmo, L. M. (2021). Avaliação da aplicação intraovariana de células-tronco mesenquimais e do meio condicionado em bovinos. Botucatu: UNESP. http://doi.org/10.17616/R31NJN39.

Castro-Malaspina, H., Gay, R. E., Resnick, G., Kapoor, N., Meyers, P., Chiarieri, D., McKenzie, S., Broxmeyer, H. E., & Moore, M. A. (1980). Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood, 56(2), 289-301. http://doi.org/10.1182/blood.V56.2.289.289. PMid:6994839.

Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., Deans, R. J., Keating, A., Prockop, D. J., & Horwitz, E. M. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315-317. http://doi.org/10.1080/14653240600855905. PMid:16923606.

Enciso, N., Avedillo, L., Fermín, M. L., Fragío, C., & Tejero, C. (2020). Cutaneous wound healing: Canine allogeneic ASC therapy. Stem Cell Research & Therapy, 11(1), 261. http://doi.org/10.1186/s13287-020-01778-5. PMid:32600465.

Falcão, M. S. A., Brunel, H., Peixer, M. A. S., Dallago, B. S. L., Costa, F. F., Queiroz, L. M., Campbell, P., & Malard, P. F. (2020). Effect of allogeneic mesenchymal stem cells (MSCs) on corneal wound healing in dogs. Journal of Traditional and Complementary Medicine, 10(5), 440-445. http://doi.org/10.1016/j.jtcme.2019.04.006. PMid:32953559.

Feng, X., Ling, L., Zhang, W., Liu, X., Wang, Y., Luo, Y., & Xiong, Z. (2020). Effects of human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation in situ on primary ovarian insufficiency in SD rats. Reproductive Sciences, 27(7), 1502-1512. http://doi.org/10.1007/s43032-020-00147-0. PMid:31953773.

Fernandes, C. A. C., Lopes, A. C., Gonçalves, F. C., Pereira, J. R., Guimarães, J. P. DE A., Castilho, A. C. S., & Caixeta, E. S. (2021). Improvement in early antral follicle development and gene expression modulation prior to follicle aspiration in bovine cumulus-oocyte complexes by equine chorionic gonadotropin. Theriogenology, 172, 281-288. http://doi.org/10.1016/j.theriogenology.2021.07.003. PMid:34303227.

Friedenstein, A. J., Chailakhjan, R. K., & Lalykina, K. S. (1970). The development of fibroblast colonies in monolayer cultures of guinea‐pig bone marrow and spleen cells. Cell and Tissue Kinetics, 3(4), 393-403. http://doi.org/10.1111/j.1365-2184.1970.tb00347.x. PMid:5523063.

Friedenstein, A. J., Chailakhyan, R. K., Latsinik, N. V., Panasyuk, A. F., & Keiliss-Borok, I. V. (1974). Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues: Cloning in vitro and retransplantation in vivo. Transplantation, 17(4), 331-340. http://doi.org/10.1097/00007890-197404000- 00001. PMid:4150881.

Friedenstein, A. J., Gorskaja, U. F., & Kulagina, N. N. (1976). Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental Hematology, 4(5), 267-274. PMid:976387.

Friedenstein, A. J., Piatetzky-Shapiro, I. I., & Petrakova, K. V. (1966). Osteogenesis in transplants of bone marrow cells. Journal of Embryology and Experimental Morphology, 16(3), 381-390. http://doi.org/10.1242/dev.16.3.381. PMid:5336210.

Galderisi, U., Peluso, G., & Di Bernardo, G. (2022). Clinical trials based on mesenchymal stromal cells are exponentially increasing: Where are we in recent years? Stem Cell Reviews and Reports, 18(1), 23-36. http:// doi.org/10.1007/s12015-021-10231-w. PMid:34398443.

Gao, F., Chiu, S. M., Motan, D. A. L., Zhang, Z., Chen, L., Ji, H. L., Tse, H. F., Fu, Q. L., & Lian, Q. (2016). Mesenchymal stem cells and immunomodulation: Current status and future prospects. Cell Death & Disease, 7(1), e2062. http://doi.org/10.1038/cddis.2015.327. PMid:26794657.

Gibson, M. A., Brown, S. G., & Brown, N. O. (2017). Semitendinosus myopathy and treatment with adipose-derived stem cells in working German shepherd police dogs. The Canadian Veterinary Journal. La Revue Veterinaire Canadienne, 58(3), 241-246. PMid:28246410.

Gimble, J. M., Bunnell, B. A., Frazier, T., Rowan, B., Shah, F., Thomas-Porch, C., & Wu, X. (2013). Adipose-derived stromal/stem cells: A primer. Organogenesis, 9(1), 3. http://doi.org/10.4161/org.24279. PMid:23538753.

Golchin, A. (2021). Cell-based therapy for severe COVID-19 patients: Clinical trials and cost-utility. Stem Cell Reviews and Reports, 17(1), 56-62. http://doi.org/10.1007/s12015-020-10046-1. PMid:33009982.

Guo, Y., Yu, Y., Hu, S., Chen, Y., & Shen, Z. (2020). The therapeutic potential of mesenchymal stem cells for cardiovascular diseases. Cell Death & Disease, 11(5), 349. http://doi.org/10.1038/s41419-020-2542-9. PMid:32393744.

Han, Z. C., Du, W. J., Han, Z. B., & Liang, L. (2017). New insights into the heterogeneity and functional diversity of human mesenchymal stem cells. Bio-Medical Materials and Engineering, 28(s1), S29-S45. http://doi.org/10.3233/ BME-171622. PMid:28372276.

Hass, R., Kasper, C., Böhm, S., & Jacobs, R. (2011). Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Communication and Signaling, 9(1), 12. http://doi.org/10.1186/1478-811X-9-12. PMid:21569606.

Hayden, C. B., Sala, R. V., Absalón-Medina, V. A., Motta, J. C. L., Pereira, D., Moreno, J. F., & García-Guerra, A. (2022). Synchronization of follicle wave emergence before ovarian superstimulation with FSH and ovum pick-up improves in vitro embryo production in pregnant heifers. Theriogenology, 188, 71-78. http://doi.org/10.1016/j.theriogenology.2022.05.017. PMid:35688041.

Hessock, E. A., Edwards, J. L., Schrick, F. N., Payton, R. R., Campagna, S. R., Pollock, A. B., Clark, H. M., Stokes, A. E., Klabnik, J. L., Hill, K. S., Roberts, S. R., Hinson, M. G., & Moorey, S. E. (2023). Metabolite abundance in bovine preovulatory follicular fluid is influenced by follicle developmental progression post estrous onset in cattle. Frontiers in Cell and Developmental Biology, 11, 1156060. http://doi.org/10.3389/fcell.2023.1156060. PMid:37215073.

Ivanovska, A., Wang, M., Arshaghi, T. E., Shaw, G., Alves, J., Byrne, A., Butterworth, S., Chandler, R., Cuddy, L., Dunne, J., Guerin, S., Harry, R., McAlindan, A., Mullins, R. A., & Barry, F. (2022). Manufacturing mesenchymal stromal cells for the treatment of osteoarthritis in canine patients: Challenges and recommendations. Frontiers in Veterinary Science, 9, 897150. http://doi.org/10.3389/fvets.2022.897150. PMid:35754551.

Jesus Junior, O. G., Neri, H. L. D. H., Lima, A. K. F., Cavalcante, T. V., Faustino, L. R., Silva, C. M. G., & Dias, F. E. F. (2023). Strategic re-use of intravaginal progesterone devices increases conception rate in primiparous Nellore cows. Semina: Ciências Agrárias, 43(6), 2707-2716. http://doi.org/10.5433/1679-0359.2022v43n6p2707.

Jinnai, I., Bessho, M., Murohashi, I., Nara, N., & Hirashima, K. (1984). Relationship between fibroblastoid colonyforming units (CFU-f) and hemopoietic precursor cells in normal human bone marrow. International Journal of Cell Cloning, 2(6), 341-347. http://doi.org/10.1002/stem.5530020602. PMid:6520441.

Karp, J. M., & Leng Teo, G. S. (2009). Mesenchymal stem cell homing: The devil is in the details. Cell Stem Cell, 4(3), 206. http://doi.org/10.1016/j.stem.2009.02.001. PMid:19265660.

Kern, S., Eichler, H., Stoeve, J., Klüter, H., & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24(5), 1294-1301. http://doi.org/10.1634/stemcells.2005-0342. PMid:16410387.

Kim, M. S., Kong, D., Han, M., Roh, K., Koo, H., Lee, S., & Kang, K. S. (2023). Canine amniotic membrane-derived mesenchymal stem cells ameliorate atopic dermatitis through regeneration and immunomodulation. Veterinary Research Communications, 47(4), 2055-2070. http://doi.org/10.1007/s11259-023-10155-5. PMid:37421548.

Kim, S. E., Pozzi, A., Yeh, J. C., Lopez-Velazquez, M., Au Yong, J. A., Townsend, S., Dunlap, A. E., Christopher, S. A., Lewis, D. D., Johnson, M. D., & Petrucci, K. (2019). Intra-articular umbilical cord derived mesenchymal stem cell therapy for chronic elbow osteoarthritis in dogs: A double-blinded, placebo-controlled clinical trial. Frontiers in Veterinary Science, 6, 474. http://doi.org/10.3389/fvets.2019.00474. PMid:31921927.

Klerk, E., & Hebrok, M. (2021). Stem cell-based clinical trials for diabetes mellitus. Frontiers in Endocrinology, 12, 631463. http://doi.org/10.3389/fendo.2021.631463. PMid:33716982.

Kolf, C. M., Cho, E., & Tuan, R. S. (2007). Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: Regulation of niche, self-renewal and differentiation. Arthritis Research & Therapy, 9(1), 204. http://doi.org/10.1186/ar2116. PMid:17316462.

Kuzmuk, K. N., & Schook, L. B. (2011). Pigs as a model for biomedical sciences. In M. F. Rothschild & A. Ruvinsky (Eds.), The genetics of the pig (2nd ed., pp. 426-444). Wallingford: CABI. http://doi.org/10.1079/9781845937560.0426.

Lazarus, H. M., Haynesworth, S. E., Gerson, S. L., Rosenthal, N. S., & Caplan, A. I. (1995). Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): Implications for therapeutic use. Bone Marrow Transplantation, 16(4), 557-564. PMid:8528172.

Le Blanc, K., & Mougiakakos, D. (2012). Multipotent mesenchymal stromal cells and the innate immune system. Nature Reviews. Immunology, 12(5), 383. http://doi.org/10.1038/nri3209. PMid:22531326.

Lee, H. S., Huang, G., Chiang, H., Chiou, L., Chen, M., Hsieh, C., & Jiang, C. (2003). Multipotential mesenchymal stem cells from femoral bone marrow near the site of osteonecrosis. Stem Cells, 21(2), 190-199. http://doi.org/10.1634/stemcells.21-2-190. PMid:12634415.

Levy, O., Kuai, R., Siren, E. M. J., Bhere, D., Milton, Y., Nissar, N., de Biasio, M., Heinelt, M., Reeve, B., Abdi, R., Alturki, M., Fallatah, M., Almalik, A., Alhasan, A. H., Shah, K., & Karp, J. M. (2020). Shattering barriers toward clinically meaningful MSC therapies. Science Advances, 6(30), eaba6884. http://doi.org/10.1126/sciadv.aba6884. PMid:32832666.

Li, J., Mao, Q. X., He, J. J., She, H. Q., Zhang, Z., & Yin, C. Y. (2017). Human umbilical cord mesenchymal stem cells improve the reserve function of perimenopausal ovary via a paracrine mechanism. Stem Cell Research & Therapy, 8(1), 55. http://doi.org/10.1186/s13287-017-0514-5. PMid:28279229.

Lima, I. C., & Durli, O. (2018). Células-tronco ovarianas e recuperação da fertilidade pós-quimioterapia em camundongos fêmeas. Porto Alegre: UFRGS. https://lume.ufrgs.br/handle/10183/196816

Magri, C., Schramme, M., Febre, M., Cauvin, E., Labadie, F., Saulnier, N., François, I., Lechartier, A., Aebischer, D., Moncelet, A. S., & Maddens, S. (2019). Comparison of efficacy and safety of single versus repeated intraarticular injection of allogeneic neonatal mesenchymal stem cells for treatment of osteoarthritis of the metacarpophalangeal/metatarsophalangeal joint in horses: A clinical pilot study. PLoS One, 14(8), e0221317. http://doi.org/10.1371/journal.pone.0221317. PMid:31465445.

Maitra, B., Szekely, E., Gjini, K., Laughlin, M. J., Dennis, J., Haynesworth, S. E., & Koç, O. N. (2004). Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplantation, 33(6), 597-604. http://doi.org/10.1038/sj.bmt.1704400. PMid:14716336.

Maniatopoulos, C., Sodek, J., & Melcher, A. H. (1988). Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell and Tissue Research, 254(2), 317-330. http://doi.org/10.1007/BF00225804. PMid:3197089.

Maria, A. T. J., Maumus, M., Le Quellec, A., Jorgensen, C., Noël, D., & Guilpain, P. (2017). Adipose-derived mesenchymal stem cells in autoimmune disorders: State of the art and perspectives for systemic sclerosis. Clinical Reviews in Allergy & Immunology, 52(2), 243. http://doi.org/10.1007/s12016-016-8552-9. PMid:27207172.

Morotti, F., Camargo, H. S., Silva, L. O. L., Lorenzetti, E., Zangirolamo, A. F., & Seneda, M. M. (2021). Contagem de folículos antrais: Relação com a eficiência das biotécnicas e fertilidade. Revista Brasileira de Reprodução Animal, 45(4), 202-209. http://doi.org/10.21451/1809-3000.RBRA2021.026.

Nagamura-Inoue, T., & He, H. (2014). Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility. World Journal of Stem Cells, 6(2), 195-202. http://doi.org/10.4252/wjsc.v6.i2.195. PMid:24772246.

Naji, A., Eitoku, M., Favier, B., Deschaseaux, F., Rouas-Freiss, N., & Suganuma, N. (2019a). Biological functions of mesenchymal stem cells and clinical implications. Cellular and Molecular Life Sciences, 76(17), 3323-3348. http://doi.org/10.1007/s00018-019-03125-1. PMid:31055643.

Naji, A., Eitoku, M., Favier, B., Deschaseaux, F., Rouas-Freiss, N., & Suganuma, N. (2019b). Biological functions of mesenchymal stem cells and clinical implications. Cellular and Molecular Life Sciences, 76(17), 3323-3348. http://doi.org/10.1007/s00018-019-03125-1. PMid:31055643.

Nara, N., Jinnai, I., Imaia, Y., Bessho, M., & Hirashima, K. (1984). Reduction of granulocyte-macrophages progenitor cells (CFU-C) and fibroblastoid colony-forming units (CFU-F) by leukemic cells in human and murine leukemia. Acta Haematologica, 72(3), 171-180. http://doi.org/10.1159/000206383. PMid:6438981.

Nitahara-Kasahara, Y., Hayashita-Kinoh, H., Ohshima-Hosoyama, S., Okada, H., Wada-Maeda, M., Nakamura, A., Okada, T., & Takeda, S. (2012). Long-term engraftment of multipotent mesenchymal stromal cells that differentiate to form myogenic cells in dogs with duchenne muscular dystrophy. Molecular Therapy, 20(1), 168-177. http://doi.org/10.1038/mt.2011.181. PMid:21934652.

Oliveira, R. B., Silva Junior, B. A., & Cavalcante, T. H. C. (2018). Indução de novilhas para protocolo de inseminação artificial em tempo fixo: Revisão. Pubvet, 12(11), 1-8. http://doi.org/10.31533/pubvet.v12n11a210.1-8.

Owen, M., & Friedenstein, A. J. (1988). Stromal stem cells: Marrow-derived osteogenic precursors. In D. Evered & S. Harnett (Eds.), Ciba Foundation symposium (Vol. 136). Indianapolis: CIBA Foundation. http://doi.org/10.1002/9780470513637.ch4.

Pérez-Merino, E. M., Usón-Casaús, J. M., Zaragoza-Bayle, C., Duque-Carrasco, J., Mariñas-Pardo, L., HermidaPrieto, M., Barrera-Chacón, R., & Gualtieri, M. (2015). Safety and efficacy of allogeneic adipose tissue-derived mesenchymal stem cells for treatment of dogs with inflammatory bowel disease: Clinical and laboratory outcomes. Veterinary Journal, 206(3), 385-390. http://doi.org/10.1016/j.tvjl.2015.08.003. PMid:26526522.

Pittenger, M. F., Discher, D. E., Péault, B. M., Phinney, D. G., Hare, J. M., & Caplan, A. I. (2019). Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regenerative Medicine, 4(1), 22. http://doi.org/10.1038/ s41536-019-0083-6. PMid:31815001.

Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., & Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143-147. http://doi.org/10.1126/science.284.5411.143. PMid:10102814.

Prządka, P., Buczak, K., Frejlich, E., Gąsior, L., Suliga, K., & Kiełbowicz, Z. (2021). The role of Mesenchymal Stem Cells (MSCs) in veterinary medicine and their use in musculoskeletal disorders. Biomolecules, 11(8), 1141. http://doi.org/10.3390/biom11081141. PMid:34439807.

Ribas, B. N., Missio, D., Roman, I. J., Alves Neto, N., Claro, I., Santos Brum, D., & Leivas, F. G. (2018). Superstimulation with eCG prior to ovum pick-up improves follicular development and fertilization rate of cattle oocytes. Animal Reproduction Science, 195, 284-290. http://doi.org/10.1016/j.anireprosci.2018.06.006. PMid:29907333.

Rocha, C. C., Martins, T., Mello, B. P., Dalmaso de Mello, G., Motta, I. G., Lemes, K. M., Binelli, M., Madureira, E. H., & Pugliesi, G. (2022). Comparing the effect of estradiol benzoate and 17β-estradiol plus progesterone on follicular turnover and development, and pregnancy outcomes in a timed artificial insemination protocol. Theriogenology, 192, 73-80. http://doi.org/10.1016/j.theriogenology.2022.08.033. PMid:36063672.

Rojas Canadas, E., Battista, S. E., Kieffer, J. D., Wellert, S. R., Mussard, M. L., & Garcia-Guerra, A. (2023). GnRH dose at initiation of a 5-day CO-Synch + P4 for fixed time artificial insemination in suckled beef cows. Animal Reproduction Science, 250, 107210. http://doi.org/10.1016/j.anireprosci.2023.107210. PMid:36913895.

Rubin, R. (2018). Unproven but profitable: The boom in US stem cell clinics. Journal of the American Medical Association, 320(14), 1421-1423. http://doi.org/10.1001/jama.2018.13861. PMid:30326510.

Ryu, H. H., Kang, B. J., Park, S. S., Kim, Y., Sung, G. J., Woo, H. M., Kim, W. H., & Kweon, O. K. (2012). Comparison of mesenchymal stem cells derived from fat, bone marrow, Wharton’s jelly, and umbilical cord blood for treating spinal cord injuries in dogs. The Journal of Veterinary Medical Science, 74(12), 1617-1630. http://doi. org/10.1292/jvms.12-0065. PMid:22878503.

Sá, M. M., & Oliveira Júnior, J. S. (2023). A utilização de GNRH no momento da IATF. Revista Ibero-Americana de Humanidades, Ciência & Educação, 9(5), 3296-3309. http://doi.org/10.51891/rease.v9i5.10118.

Sacchetti, B., Funari, A., Remoli, C., Giannicola, G., Kogler, G., Liedtke, S., Cossu, G., Serafini, M., Sampaolesi, M., Tagliafico, E., Tenedini, E., Saggio, I., Robey, P. G., Riminucci, M., & Bianco, P. (2016). No identical “mesenchymal stem cells” at different times and sites: Human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Reports, 6(6), 897-913. http://doi.org/10.1016/j.stemcr.2016.05.011. PMid:27304917.

Sales, A., Cappellozza, B. I., Vilela, E., Claro Júnior, I., Sá Filho, O. G., & Vasconcelos, J. L. M. (2023). Effects of estradiol cypionate dosage and body condition on reproductive performance of Nellore cattle synchronized for timed-artificial insemination. Theriogenology, 210, 207-213. http://doi.org/10.1016/j.theriogenology.2023.07.032. PMid:37527622.

Santos Marques, J. C., Cadima, G. P., Faria, A. C. F., Guimarães, E. A., Oliveira, F. S., & Santos, R. M. (2022). Application of PGF2α at the moment of fixed-time artificial insemination in crossbred beef cows. Animal Reproduction, 19(4), e20220012. http://doi.org/10.1590/1984-3143-ar2022-0012. PMid:36381270.

Santos, G. M. G., Bortolassi Junior, L., Silva-Santos, K. C., Ayres Dias, J. H., Dias, I., Seneda, M. M., & Morotti, F. (2023). Conception rate and pregnancy loss in fixed-time cattle embryo transfer programs are related to the luteal blood perfusion but not to the corpus luteum size. Theriogenology, 210, 251-255. http://doi.org/10.1016/j.theriogenology.2023.07.039. PMid:37549464.

Sarmento, C., Rodrigues, M. N., Bocabello, R. Z., Mess, A. M., & Miglino, M. A. (2014). Pilot study: Bone marrow stem cells as a treatment for dogs with chronic spinal cord injury. Regenerative Medicine Research, 2(1), 9. http://doi.org/10.1186/2050-490X-2-9. PMid:25984329.

Schwarzmann, L., Marchand, A., Knutti, B., Bruckmaier, R., Bollwein, H., & Scarlet, D. (2023). Effects of postpartum diseases on antral follicle count and serum concentration of Anti-Müllerian hormone in dairy cows. Animal Reproduction Science, 255, 107291. http://doi.org/10.1016/j.anireprosci.2023.107291. PMid:37392501.

Sen Halicioglu, B., Saadat, K. A. S. M., & Tuglu, M. I. (2022). Adipose-derived mesenchymal stem cell transplantation in chemotherapy-induced premature ovarian insufficiency: The role of connexin and pannexin. Reproductive Sciences, 29(4), 1316-1331. http://doi.org/10.1007/s43032-021-00718-9. PMid:34449073.

Seneda, M. M., Yokomizo, D. N., Oliveira, F. A. M., dos Anjos, M. M., & Moro, F. (2022). Biotécnicas da reprodução em bovinos aplicações práticas. Revista Brasileira de Buiatria, 1(1), 1-24. http://doi.org/10.4322/2763-955X.2022.003.

Sensebé, L. (2008). Clinical grade production of mesenchymal stem cells. Bio-Medical Materials and Engineering, 18(1, Suppl), S3. PMid:18334718.

Sgrignoli, M. R., Silva, D. A., Nascimento, F. F., Sgrignoli, D. A. M., Nai, G. A., Silva, M. G., Barros, M. A., Bittencourt, M. K. W., de Morais, B. P., Dinallo, H. R., Foglia, B. T. D., Cabrera, W. B., Fares, E. C., & Andrade, S. F. (2019). Reduction in the inflammatory markers CD4, IL-1, IL-6 and TNFα in dogs with keratoconjunctivitis sicca treated topically with mesenchymal stem cells. Stem Cell Research, 39, 101525. http://doi.org/10.1016/j. scr.2019.101525. PMid:31430719.

Sharun, K., Rawat, T., Kumar, R., Chandra, V., Saxena, A. C., Pawde, A. M., Kinjavdekar, P., Amarpal, & Sharma, G. T. (2020). Clinical evaluation following the percutaneous transplantation of allogenic bone marrow-derived mesenchymal stem cells (aBM-MSC) in dogs affected by vertebral compression fracture. Veterinary and Animal Science, 10, 100152. http://doi.org/10.1016/j.vas.2020.100152. PMid:33117911.

Silva Meirelles, L., Chagastelles, P. C., & Nardi, N. B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 119(11), 2204-2213. http://doi.org/10.1242/jcs.02932. PMid:16684817.

Silva Meirelles, L., Fontes, A. M., Covas, D. T., & Caplan, A. I. (2009). Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine & Growth Factor Reviews, 20(5-6), 419-427. http://doi.org/10.1016/j.cytogfr.2009.10.002. PMid:19926330.

Souza, A. C. C., Costa, C. B., Silva, C. B., Bergamo, L. Z., Morotti, F., & Seneda, M. M. (2019). Influência da contagem de folículos antrais na produção in vitro de embriões bovinos de doadoras Bos indicus e Bos taurus Revisão de literatura. Revista Brasileira de Reprodução Animal, 43(1), 13-17.

Starkey, M. P., Scase, T. J., Mellersh, C. S., & Murphy, S. (2005). Dogs really are man’s best friend: Canine genomics has applications in veterinary and human medicine! Briefings in Functional Genomics & Proteomics, 4(2), 112-128. http://doi.org/10.1093/bfgp/4.2.112. PMid:16102268.

Tschopp, J. C., Macagno, A. J., Mapletoft, R. J., Menchaca, A., & Bó, G. A. (2022). Effect of the addition of GnRH and a second prostaglandin F2α treatment on pregnancy per artificial insemination in lactating dairy cows submitted to an estradiol/progesterone-based timed-AI protocol. Theriogenology, 188, 63-70. http://doi.org/10.1016/j.theriogenology.2022.05.019. PMid:35667231.

Tse, W. T., Pendleton, J. D., Beyer, W. M., Egalka, M. C., & Guinan, E. C. (2003). Suppression of allogeneic T-cell proliferation by human marrow stromal cells: Implications in transplantation. Transplantation, 75(3), 389- 397. http://doi.org/10.1097/01.TP.0000045055.63901.A9. PMid:12589164.

Vanni, V. S., Viganò, P., Papaleo, E., Mangili, G., Candiani, M., & Giorgione, V. (2017). Advances in improving fertility in women through stem cell-based clinical platforms. Expert Opinion on Biological Therapy, 17(5), 585-593. http://doi.org/10.1080/14712598.2017.1305352. PMid:28351161.

Varghese, J., Griffin, M., Mosahebi, A., & Butler, P. (2017). Systematic review of patient factors affecting adipose stem cell viability and function: Implications for regenerative therapy. Stem Cell Research & Therapy, 8(1), 45. http://doi.org/10.1186/s13287-017-0483-8. PMid:28241882.

Velho, G. S. (2023). Associação de cipionato de estradiol e GnRH no controle da ovulação em vacas taurinas e sintéticas. Porto Alegre: UFRGS. https://lume.ufrgs.br/handle/10183/258701

Vieira, L., & Pazzim, L. (2021). Transferência de embriões em bovinos: Revisão de literatura. Curitibanos: UFSC. https://repositorio.ufsc.br/handle/123456789/229535

Vural, B., Duruksu, G., Vural, F., Gorguc, M., & Karaoz, E. (2019). Effects of VEGF + mesenchymal stem cells and platelet-rich plasma on inbred rat ovarian functions in cyclophosphamide-induced premature ovarian insufficiency model. Stem Cell Reviews and Reports, 15(4), 558-573. http://doi.org/10.1007/s12015-019-09892- 5. PMid:31037585.

Wagey, R., & Short, B. (2013). Isolation, enumeration, and expansion of human mesenchymal stem cells in culture. Methods in Molecular Biology (Clifton, N.J.), 946, 315-334. http://doi.org/10.1007/978-1-62703-128-8_20. PMid:23179841.

Wang, M., Yuan, Q., & Xie, L. (2018). Mesenchymal stem cell-based immunomodulation: Properties and clinical application. Stem Cells International, 2018, 3057624. http://doi.org/10.1155/2018/3057624. PMid:30013600.

Yang, V. K., Meola, D. M., Davis, A., Barton, B., & Hoffman, A. M. (2021). Intravenous administration of allogeneic Wharton jelly-derived mesenchymal stem cells for treatment of dogs with congestive heart failure secondary to myxomatous mitral valve disease. American Journal of Veterinary Research, 82(6), 487-493. http://doi.org/10.2460/ajvr.82.6.487. PMid:34032485.

Yang, Z., Du, X., Wang, C., Zhang, J., Liu, C., Li, Y., & Jiang, H. (2019). Therapeutic effects of human umbilical cord mesenchymal stem cell-derived microvesicles on premature ovarian insufficiency in mice. Stem Cell Research & Therapy, 10(1), 250. http://doi.org/10.1186/s13287-019-1327-5. PMid:31412919.

Yin, J. Q., Zhu, J., & Ankrum, J. A. (2019). Manufacturing of primed mesenchymal stromal cells for therapy. Nature Biomedical Engineering, 3(2), 90-104. http://doi.org/10.1038/s41551-018-0325-8. PMid:30944433.

Zhang, J., Xiong, J., Fang, L., Lu, Z., Wu, M., Shi, L., Qin, X., Luo, A., & Wang, S. (2016). The protective effects of human umbilical cord mesenchymal stem cells on damaged ovarian function: A comparative study. Bioscience Trends, 10(4), 265-276. http://doi.org/10.5582/bst.2016.01125. PMid:27464625.

Zhao, Y., Ma, J., Yi, P., Wu, J., Zhao, F., Tu, W., Liu, W., Li, T., Deng, Y., Hao, J., Wang, H., & Yan, L. (2020). Human umbilical cord mesenchymal stem cells restore the ovarian metabolome and rescue premature ovarian insufficiency in mice. Stem Cell Research & Therapy, 11(1), 466. http://doi.org/10.1186/s13287-020-01972-5. PMid:33148334.

Zhou, T., Yuan, Z., Weng, J., Pei, D., Du, X., He, C., & Lai, P. (2021). Challenges and advances in clinical applications of mesenchymal stromal cells. Journal of Hematology & Oncology, 14(1), 24. http://doi.org/10.1186/s13045-021- 01037-x. PMid:33579329.

Zhu, S., Lu, Y., Zhu, J., Xu, J., Huang, H., Zhu, M., Chen, Y., Zhou, Y., Fan, X., & Wang, Z. (2011). Effects of intrahepatic bone-derived mesenchymal stem cells autotransplantation on the diabetic beagle dogs. The Journal of Surgical Research, 168(2), 213-223. http://doi.org/10.1016/j.jss.2009.10.008. PMid:20097376.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Andrei Takeshita de Oliveira, Antonio Rodrigues Ferreira Braga, José Ricardo Fonseca Miranda, Paulo Fantinato-Neto, Carlos Eduardo Ambrósio