Lippia sidoides essential oil at concentration of 0.25% provided improvements in microbiota and intestine integrity of Danio rerio
XML
PDF

Supplementary Files

PDF

Keywords

aquaculture, dietary supplementation, microbiome, zebrafish.

How to Cite

Cardoso, L. ., Owatari, M. S., Chaves, F. C. M., Ferreira, T. H., Costa, D. S., Furtado, W. E., … Martins, M. L. (2024). Lippia sidoides essential oil at concentration of 0.25% provided improvements in microbiota and intestine integrity of Danio rerio. Brazilian Journal of Veterinary Medicine, 46, e005323. https://doi.org/10.29374/2527-2179.bjvm005323

Abstract

The study evaluated the effects of dietary supplementation with Lippia sidoides essential oil on the microbiota and intestinal morphology of Danio rerio. For this, 448 fish were randomly distributed in 28 tanks divided into a control group fed a commercial diet without supplementation, a group fed a commercial diet containing grain alcohol and five groups fed a commercial diet containing essential oil of L. sidoides (LSEO) at concentrations of 0.25%, 0.50%, 0.75%, 1.00% and 1.25%. After the period of dietary supplementation, biological materials were collected for microbiological and histological analyses. There were no significant differences regarding the microbiological count between the groups. Diversity of the microbiome was higher in 0.25% group than in control group. LSEO inhibited the growth of potentially pathogenic bacteria. Fish fed LSEO0.25% showed greater intestinal histomorphometric indices. The inclusion of LSEO at 0.25% in the diet of D. rerio provided improvements in fish microbiota and intestine integrity.

https://doi.org/10.29374/2527-2179.bjvm005323
XML
PDF

References

Abdel Rahman, A., Hassanin, M., & ElHady, M. (2019). Growth performance, haematology and intestinal histo‐morphology of Nile tilapia fed on Indian Lotus (Nelumbo nucifera Gaertn.) leaf powder at different concentrations. Aquaculture Research, 50(11), 3211-3222. http://dx.doi.org/10.1111/are.14276.

Abdel Rahman, A., Maricchiolo, G., Abd El‐Fattah, A. H., Alagawany, M., & Reda, R. M. (2021). Use of rice protein concentrates in Oreochromis niloticus diets and its effect on growth, intestinal morphology, biochemical indices and ghrelin gene expression. Aquaculture Nutrition, 27(6), 2267-2278. http://dx.doi.org/10.1111/anu.13361.

Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry (Vol. 456). Allured Publishing Corporation. (pp. 544-545).

Babicki, S., Arndt, D., Marcu, A., Liang, Y., Grant, J. R., Maciejewski, A., & Wishart, D. S. (2016). Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Research, 44(W1), W147-W153. http://dx.doi.org/10.1093/nar/gkw419. PMid:27190236.

Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils: A review. Food and Chemical Toxicology, 46(2), 446-475. http://dx.doi.org/10.1016/j.fct.2007.09.106. PMid:17996351.

Batey, I. (2017). The diversity of uses for cereal grains. In C. Wrigley, I. Batey & D. Miskelly (Eds.), Cereal grains (pp. 41-53). Woodhead Publishing. http://dx.doi.org/10.1016/B978-0-08-100719-8.00003-6.

Carda-Diéguez, M., Mira, A., & Fouz, B. (2014). Pyrosequencing survey of intestinal microbiota diversity in cultured sea bass (Dicentrarchus labrax) fed functional diets. FEMS Microbiology Ecology, 87(2), 451-459. http://dx.doi.org/10.1111/1574-6941.12236. PMid:24730648.

Cunha, J. A., Heinzmann, B. M., & Baldisserotto, B. (2018). The effects of essential oils and their major compounds on fish bacterial pathogens–a review. Journal of Applied Microbiology, 125(2), 328-344. http://dx.doi.org/10.1111/ jam.13911. PMid:29742307.

Dairiki, J. K., Majolo, C., Chagas, E. C., Chaves, F. C. M., Oliveira, M. R., & Morais, I. D. S. (2013). Procedimento para inclusão de óleos essenciais em rações para peixes. Circular Técnica Embrapa Manaus, 42, 1-8.

Dawood, M. A. O., El Basuini, M. F., Yilmaz, S., Abdel-Latif, H. M. R., Alagawany, M., Kari, Z. A., Razab, M. K. A. A., Hamid, N. K. A., Moonmanee, T., & Van Doan, H. (2022). Exploring the roles of dietary herbal essential oils in aquaculture: A review. Animals, 12(7), 823. http://dx.doi.org/10.3390/ani12070823. PMid:35405814.

Dawood, M. A. O., Metwally, A. E.-S., Elkomy, A. H., Gewaily, M. S., Abdo, S. E., Abdel-Razek, M. A. S., Soliman, A. A., Amer, A. A., Abdel-Razik, N. I., Abdel-Latif, H. M. R., & Paray, B. A. (2020). The impact of menthol essential oil against inflammation, immunosuppression, and histopathological alterations induced by chlorpyrifos in Nile tilapia. Fish & Shellfish Immunology, 102, 316-325. http://dx.doi.org/10.1016/j.fsi.2020.04.059. PMid:32371257.

Fetissov, S. O. (2017). Role of the gut microbiota in host appetite control: Bacterial growth to animal feeding behaviour. Nature Reviews Endocrinology, 13(1), 11-25. http://dx.doi.org/10.1038/nrendo.2016.150.PMid:27616451.

Grush, J., Noakes, D. L. G., & Moccia, R. D. (2004). The efficacy of clove oil as an anesthetic for the zebrafish, Danio rerio (Hamilton). Zebrafish, 1(1), 46-53. http://dx.doi.org/10.1089/154585404774101671. PMid:18248205.

Hammer, Ø., Harper, D. A., & Ryan, P. D. (2001). Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1-9.

Hassan, W. H. B., El Gamal, A. A., El-Sheddy, E., Al-Oquil, M., & Farshori, N. N. (2014). The chemical composition and antimicrobial activity of the essential oil of Lavandula coronopifolia growing in Saudi Arabia. Journal of Chemical and Pharmaceutical Research, 6, 604-615.

He, W., Rahimnejad, S., Wang, L., Song, K., Lu, K., & Zhang, C. (2017). Effects of organic acids and essential oils blend on growth, gut microbiota, immune response and disease resistance of Pacific white shrimp (Litopenaeus vannamei) against Vibrio parahaemolyticus. Fish & Shellfish Immunology, 70, 164-173. http://dx.doi.org/10.1016/j.fsi.2017.09.007. PMid:28882791.

Heberle, H., Meirelles, G. V., Da Silva, F. R., Telles, G. P., & Minghim, R. (2015). InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics, 16(1), 169. http://dx.doi.org/10.1186/s12859- 015-0611-3. PMid:25994840.

Howe, K., Clark, M. D., Torroja, C. F., Torrance, J., Berthelot, C., Muffato, M., Collins, J. E., Humphray, S., McLaren, K., Matthews, L., McLaren, S., Sealy, I., Caccamo, M., Churcher, C., Scott, C., Barrett, J. C., Koch, R., Rauch, G.-J., White, S., Chow, W., Kilian, B., Quintais, L. T., Guerra-Assunção, J. A., Zhou, Y., Gu, Y., Yen, J., Vogel, J.-H., Eyre, T., Redmond, S., Banerjee, R., Chi, J., Fu, B., Langley, E., Maguire, S. F., Laird, G. K., Lloyd, D., Kenyon, E., Donaldson, S., Sehra, H., Almeida-King, J., Loveland, J., Trevanion, S., Jones, M., Quail, M., Willey, D., Hunt, A., Burton, J., Sims, S., McLay, K., Plumb, B., Davis, J., Clee, C., Oliver, K., Clark, R., Riddle, C., Elliott, D., Threadgold, G., Harden, G., Ware, D., Begum, S., Mortimore, B., Kerry, G., Heath, P., Phillimore, B., Tracey, A., Corby, N., Dunn, M., Johnson, C., Wood, J., Clark, S., Pelan, S., Griffiths, G., Smith, M., Glithero, R., Howden, P., Barker, N., Lloyd, C., Stevens, C., Harley, J., Holt, K., Panagiotidis, G., Lovell, J., Beasley, H., Henderson, C., Gordon, D., Auger, K., Wright, D., Collins, J., Raisen, C., Dyer, L., Leung, K., Robertson, L., Ambridge, K., Leongamornlert, D., McGuire, S., Gilderthorp, R., Griffiths, C., Manthravadi, D., Nichol, S., Barker, G., Whitehead, S., Kay, M., Brown, J., Murnane, C., Gray, E., Humphries, M., Sycamore, N., Barker, D., Saunders, D., Wallis, J., Babbage, A., Hammond, S., Mashreghi-Mohammadi, M., Barr, L., Martin, S., Wray, P., Ellington, A., Matthews, N., Ellwood, M., Woodmansey, R., Clark, G., Cooper, J. D., Tromans, A., Grafham, D., Skuce, C., Pandian, R., Andrews, R., Harrison, E., Kimberley, A., Garnett, J., Fosker, N., Hall, R., Garner, P., Kelly, D., Bird, C., Palmer, S., Gehring, I., Berger, A., Dooley, C. M., Ersan-Ürün, Z., Eser, C., Geiger, H., Geisler, M., Karotki, L., Kirn, A., Konantz, J., Konantz, M., Oberländer, M., Rudolph-Geiger, S., Teucke, M., Lanz, C., Raddatz, G., Osoegawa, K., Zhu, B., Rapp, A., Widaa, S., Langford, C., Yang, F., Schuster, S. C., Carter, N. P., Harrow, J., Ning, Z., Herrero, J., Searle, S. M. J., Enright, A., Geisler, R., Plasterk, R. H. A., Lee, C., Westerfield, M., de Jong, P. J., Zon, L. I., Postlethwait, J. H., Nüsslein-Volhard, C., Hubbard, T. J. P., Crollius, H. R., Rogers, J., & Stemple, D. L. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature, 496(7446), 498-503. http://dx.doi.org/10.1038/nature12111. PMid:23594743.

Humason, G. L. (1962). Animal tissue techniques. W.H. Freeman. http://dx.doi.org/10.5962/bhl.title.5890.

Huyben, D., Chiasson, M., Lumsden, J. S., Pham, P. H., & Chowdhury, M. A. K. (2021). Dietary microencapsulated blend of organic acids and plant essential oils affects intestinal morphology and microbiome of rainbow trout (Oncorhynchus mykiss). Microorganisms, 9(10), 2063. http://dx.doi.org/10.3390/microorganisms9102063. PMid:34683384.

Islam, S. M., Rohani, M. F., & Shahjahan, M. (2021). Probiotic yeast enhances growth performance of Nile tilapia (Oreochromis niloticus) through morphological modifications of intestine. Aquaculture Reports, 21, 100800. http://dx.doi.org/10.1016/j.aqrep.2021.100800.

Kord, M. I., Maulu, S., Srour, T. M., Omar, E. A., Farag, A. A., Nour, A. A. M., Hasimuna, O. J., Abdel-Tawwab, M., & Khalil, H. S. (2022). Impacts of water additives on water quality, production efficiency, intestinal morphology, gut microbiota, and immunological responses of Nile tilapia fingerlings under a zero-water-exchange system. Aquaculture, 547, 737503. http://dx.doi.org/10.1016/j.aquaculture.2021.737503.

Lambert, R. J., Skandamis, P. N., Coote, P. J., & Nychas, G. J. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology, 91(3), 453-462. http://dx.doi.org/10.1046/j.1365-2672.2001.01428.x. PMid:11556910.

Lee, S. E., Hwang, H. J., Ha, J. S., Jeong, H. S., & Kim, J. H. (2003). Screening of medicinal plant extracts for antioxidant activity. Life Sciences, 73(2), 167-179. http://dx.doi.org/10.1016/S0024-3205(03)00259-5. PMid:12738032.

Martins, M. L., Watral, V., Rodrigues-Soares, J. P., & Kent, M. L. (2017). A method for collecting eggs of Pseudocapillaria tomentosa (Nematoda: Capillariidae) from zebrafish Danio rerio and efficacy of heat and chlorine for killing the nematode’s eggs. Journal of Fish Diseases, 40(2), 169-182. http://dx.doi.org/10.1111/jfd.12501. PMid:27334246.

Mauro, M., Lazzara, V., Arizza, V., Luparello, C., Ferrantelli, V., Cammilleri, G., Inguglia, L., & Vazzana, M. (2021). Human drug pollution in the aquatic system: The biochemical responses of Danio rerio adults. Biology, 10(10), 1064. http://dx.doi.org/10.3390/biology10101064. PMid:34681162.

Owatari, M. S., Jesus, G. F. A., Melo Filho, M. E. S., Lapa, K. R., Martins, M. L., & Mouriño, J. L. P. (2018). Synthetic fibre as biological support in freshwater recirculating aquaculture systems (RAS). Aquacultural Engineering, 82, 56-62. http://dx.doi.org/10.1016/j.aquaeng.2018.06.001.

Porretti, M., Arrigo, F., Di Bella, G., & Faggio, C. (2022). Impact of pharmaceutical products on zebrafish: An effective tool to assess aquatic pollution. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 261, 109439. http://dx.doi.org/10.1016/j.cbpc.2022.109439. PMid:35961532.

Ran, C., Hu, J., Liu, W., Liu, Z., He, S., Dan, B. C. T., Diem, N. N., Ooi, E. L., & Zhou, Z. (2016). Thymol and Carvacrol affect hybrid Tilapia through the combination of direct stimulation and an intestinal microbiotamediated effect: Insights from a germ-free Zebrafish model. The Journal of Nutrition, 146(5), 1132-1140. http://dx.doi.org/10.3945/jn.115.229377. PMid:27075912.

Reda, R. M., Maricchiolo, G., Quero, G. M., Basili, M., Aarestrup, F. M., Pansera, L., Mirto, S., El-Fattah, A. H. A., Alagawany, M., & Rahman, A. N. A. (2022). Rice protein concentrate as a fish meal substitute in Oreochromis niloticus: Effects on immune response, intestinal cytokines, Aeromonas veronii resistance, and gut microbiota composition. Fish & Shellfish Immunology, 126, 237-250. http://dx.doi.org/10.1016/j.fsi.2022.05.048. PMid:35654384.

Robles, R., Lozano, A. B., Sevilla, A., Márquez, L., Nuez-Ortín, W., & Moyano, F. J. (2013). Effect of partially protected butyrate used as feed additive on growth and intestinal metabolism in sea bream (Sparus aurata). Fish Physiology and Biochemistry, 39(6), 1567-1580. http://dx.doi.org/10.1007/s10695-013-9809-3. PMid:23737146.

Rohani, M. F., Islam, S. M., Hossain, M. K., Ferdous, Z., Siddik, M. A., Nuruzzaman, M., Padeniya, U., Brown, C., & Shahjahan, M. (2022). Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish. Fish & Shellfish Immunology, 120, 569-589. http://dx.doi.org/10.1016/j.fsi.2021.12.037. PMid:34963656.

Romero, J., Ringø, E., & Merrifield, D. L. (2014). The gut microbiota of fish. In D. Merrifield & E. Ringø (Eds.), Aquaculture nutrition: Gut health, probiotics and prebiotics (pp. 75-100). Wiley. http://dx.doi.org/10.1002/9781118897263.ch4.

Sanden, M., Jørgensen, S., Hemre, G. I., Ørnsrud, R., & Sissener, N. H. (2012). Zebrafish (Danio rerio) as a model for investigating dietary toxic effects of deoxynivalenol contamination in aquaculture feeds. Food and Chemical Toxicology, 50(12), 4441-4448. http://dx.doi.org/10.1016/j.fct.2012.08.042. PMid:22975143.

Sikkema, J., de Bont, J. A., & Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiological Reviews, 59(2), 201-222. http://dx.doi.org/10.1128/mr.59.2.201-222.1995. PMid:7603409.

Silva, C. S. R., Barreto, C. L. P., Peixoto, R. M., Mota, R. A., Ribeiro, M. F., & Costa, M. M. (2012). Antibacterial effect of Brazilian brown propolis in different solvents against Staphylococcus spp. isolated from caprine mastitis. Ciência Animal Brasileira, 13(2), 247-251.

Soares, B. V., & Tavares-Dias, M. (2013). Espécies de Lippia (Verbenaceae), seu potencial bioativo e importância na medicina veterinária e aquicultura. Biota Amazônia, 3(1), 109-123. http://dx.doi.org/10.18561/2179-5746/ biotaamazonia.v3n1p109-123.

Souza, C. F., Baldissera, M. D., Baldisserotto, B., Heinzmann, B. M., Martos-Sitcha, J. A., & Mancera, J. M. (2019). Essential oils as stress-reducing agents for fish aquaculture: A review. Frontiers in Physiology, 10, 785. http://dx.doi.org/10.3389/fphys.2019.00785. PMid:31281264.

Yang, D., & Xu, W. (2020). Clustering on human microbiome sequencing data: A distance-based unsupervised learning model. Microorganisms, 8(10), 1612. http://dx.doi.org/10.3390/microorganisms8101612. PMid:33092203.

Yoshimizu, M., & Kimura, T. (1976). Study on the intestinal microflora of salmonids. Fish Pathology, 10(2), 243-259. http://dx.doi.org/10.3147/jsfp.10.243.

Zhang, R., Wang, X. W., Liu, L. L., Cao, Y. C., & Zhu, H. (2020). Dietary oregano essential oil improved the immune response, activity of digestive enzymes, and intestinal microbiota of the koi carp, Cyprinus carpio. Aquaculture, 518, 734781. http://dx.doi.org/10.1016/j.aquaculture.2019.734781.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Lucas Cardoso, Marco Shizuo Owatari, Francisco Célio Maia Chaves, Tamiris Henrique Ferreira, Domickson Silva Costa, William Eduardo Furtado, Marília Tedesco, Luciana Aparecida Honorato, José Luiz Pedreira Mouriño, Maurício Laterça Martins