Use of RNA-seq to identify genes encoding cytokines and chemokines activated following uptake and processing a candidate peptide vaccine developed against Mycobacterium avium subsp. paratuberculosis
PDF
XML

Keywords

Mycobacterium avium subspecies paratuberculosis, monocyte-derived macrophage, bovine, peptide vaccine, RNA-seq

How to Cite

Decourcey, M. A., Davis, W. C., & de Souza, C. (2024). Use of RNA-seq to identify genes encoding cytokines and chemokines activated following uptake and processing a candidate peptide vaccine developed against Mycobacterium avium subsp. paratuberculosis. Brazilian Journal of Veterinary Medicine, 46, e002723. https://doi.org/10.29374/2527-2179.bjvm002723

Abstract

Analysis of the primary and recall responses to a membrane molecule (MMP), encoded by MAP2121c demonstrated that tri-directional signaling between the antigen-presenting cell (APC), CD4 and CD8 is essential for eliciting a CD8 cytotoxic T cell (CTL) response against Mycobacterium avium subsp. paratuberculosis. As reported here, RNA-sequencing was used to initiate the characterization of the signaling pathways involved in eliciting the development of CD8 CTL, starting with the characterization of the activation status of genes in monocyte-derived macrophages (MoMΦ) following uptake and processing MMP for the presentation of antigenic epitopes to CD4 and CD8 T cells. Activation status was compared with the uptake and processing of LPS, a nonspecific stimulator of macrophages. 1609 genes were identified that were upregulated, and 1277 were downregulated three hours after uptake and processing MMP. No significant difference was observed in the cytokine genes selected for analysis of the signaling that must occur between APC, CD4, and CD8 for the development of CTL. The initial observations indicate screening of the transcriptome should include genes involved in signaling between APC and CD4, and CD8 regardless of their activation status. Four genes of interest in this study, IL12A, IL12B, IL15, and IL23A, were not significantly different from control values. The initial studies also indicate MoMΦ can be included with dendritic cells and monocyte-derived dendritic cells for further analysis of the tri-directional signaling required for the development of CTL.

https://doi.org/10.29374/2527-2179.bjvm002723
PDF
XML

References

Abdellrazeq, G. S., Elnaggar, M. M., Bannantine, J. P., Park, K. T., Souza, C. D., Backer, B., Hulubei, V., Fry, L. M., Khaliel, S. A., Torky, H. A., Schneider, D. A., & Davis, W. C. (2018). A Mycobacterium avium subsp. paratuberculosis relA deletion mutant and a 35 kDa major membrane protein elicit development of cytotoxic T lymphocytes with ability to kill intracellular bacteria. Veterinary Research, 49(1), 53. http://dx.doi.org/10.1186/s13567-018-0549-3. PMid:29941017.

Abdellrazeq, G. S., Fry, L. M., Elnaggar, M. M., Bannantine, J. P., Schneider, D. A., Chamberlin, W. M., Mahmoud, A. H. A., Park, K. T., Hulubei, V., & Davis, W. C. (2020a). Simultaneous cognate epitope recognition by bovine CD4 and CD8 T cells is essential for primary expansion of antigen-specific cytotoxic T-cells following ex vivo stimulation with a candidate Mycobacterium avium subsp. paratuberculosis peptide vaccine. Vaccine, 38(8), 2016-2025. http://dx.doi.org/10.1016/j.vaccine.2019.12.052. PMid:31902643.

Abdellrazeq, G. S., Mahmoud, A. H., Park, K. T., Fry, L. M., Elnaggar, M. M., Schneider, D. A., Hulubei, V., & Davis, W. C. (2020b). relA is Achilles’ heel for mycobacterial pathogens as demonstrated with deletion mutants in Mycobacterium avium subsp. paratuberculosis and mycobacterium bovis bacillus Calmette-Guerin (BCG). Tuberculosis (Edinburgh, Scotland), 120, 101904. http://dx.doi.org/10.1016/j.tube.2020.101904. PMid:32090858.

Bachmann, N. L., Salamzade, R., Manson, A. L., Whittington, R., Sintchenko, V., Earl, A. M., & Marais, B. J. (2020). Key transitions in the evolution of rapid and slow growing mycobacteria identified by comparative genomics. Frontiers in Microbiology, 10, 3019. http://dx.doi.org/10.3389/fmicb.2019.03019. PMid:32038518.

Dahl, J. L., Kraus, C. N., Boshoff, H. I., Doan, B., Foley, K., Avarbock, D., Kaplan, G., Mizrahi, V., Rubin, H., & Barry 3rd, C. E. (2003). The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. Proceedings of the National Academy of Sciences of the United States of America, 100(17), 10026-10031. http://dx.doi.org/10.1073/pnas.1631248100. PMid:12897239.

Davis, W. C., Abdellrazeq, G. S., Mahmoud, A. H., Park, K. T., Elnaggar, M. M., Donofrio, G., Hulubei, V., & Fry, L. M. (2021). Advances in understanding of the immune response to mycobacterial pathogens and vaccines through use of cattle and Mycobacterium avium subsp. paratuberculosis as a Prototypic Mycobacterial Pathogen. Vaccines, 9(10), 9. http://dx.doi.org/10.3390/vaccines9101085. PMid:34696193.

Davis, W. C., Drbal, K., Mosaad, A.-E.-A. A. E., Elbagory, A.-R. M., Tibary, A., Barrington, G. M., Park, Y. H., & Hamilton, M. J. (2007). Use of flow cytometry to identify monoclonal antibodies that recognize conserved epitopes on orthologous leukocyte differentiation antigens in goats, lamas, and rabbits. Veterinary Immunology and Immunopathology, 119(1-2), 123-130. http://dx.doi.org/10.1016/j.vetimm.2007.06.024. PMid:17686528.

Ge, S. X., Son, E. W., & Yao, R. (2018). iDEP: An integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics, 19(1), 534. http://dx.doi.org/10.1186/s12859-018-2486-6. PMid:30567491.

Geijtenbeek, T. B. H., Engering, A., & van Kooyk, Y. (2002). DC-SIGN, a C-type lectin on dendritic cells that unveils many aspects of dendritic cell biology. Journal of Leukocyte Biology, 71(6), 921-931. http://dx.doi.org/10.1189/ jlb.71.6.921. PMid:12050176.

Geijtenbeek, T. B., & Gringhuis, S. I. (2016). C-type lectin receptors in the control of T helper cell differentiation. Nature Reviews. Immunology, 16(7), 433-448. http://dx.doi.org/10.1038/nri.2016.55. PMid:27291962.

Guzman, E., Pujol, M., Ribeca, P., & Montoya, M. (2019). Bovine derived in vitro cultures generate heterogeneous populations of antigen presenting cells. Frontiers in Immunology, 10, 612. http://dx.doi.org/10.3389/ fimmu.2019.00612. PMid:30984187.

Johne, H.A., Frothingham, L. (1895). Ein eigenthumlicher fall von tuberculosis beim rind [A peculiar case of tuberculosis in a cow]. Deutsche Zeitschr Tierm Path, 21, 438-454.

Kato, M., McDonald, K. J., Khan, S., Ross, I. L., Vuckovic, S., Chen, K., Munster, D., MacDonald, K. P., & Hart, D. N. (2006). Expression of human DEC-205 (CD205) multilectin receptor on leukocytes. International Immunology, 18(6), 857-869. http://dx.doi.org/10.1093/intimm/dxl022. PMid:16581822.

Koo, H. C., Park, Y. H., Hamilton, M. J., Barrington, G. M., Davies, C. J., Kim, J. B., Dahl, J. L., Waters, W. R., & Davis, W. C. (2004). Analysis of the immune response to Mycobacterium avium subsp. paratuberculosis in experimentally infected calves. Infection and Immunity, 72(12), 6870-6883. http://dx.doi.org/10.1128/IAI.72.12.6870-6883.2004. PMid:15557608.

Kundra, S., Colomer-Winter, C., & Lemos, J. A. (2020). Survival of the Fittest: The Relationship of (p)ppGpp With Bacterial Virulence. Frontiers in Microbiology, 11, 601417. http://dx.doi.org/10.3389/fmicb.2020.601417. PMid:33343543.

Laidlaw, B. J., Craft, J. E., & Kaech, S. M. (2016). The multifaceted role of CD4(+) T cells in CD8(+) T cell memory. Nature Reviews. Immunology, 16(2), 102-111. http://dx.doi.org/10.1038/nri.2015.10. PMid:26781939.

Park, K. T., Allen, A. J., Bannantine, J. P., Seo, K. S., Hamilton, M. J., Abdellrazeq, G. S., Rihan, H. M., Grimm, A., & Davis, W. C. (2011). Evaluation of two mutants of Mycobacterium avium subsp. paratuberculosis as candidates for a live attenuated vaccine for Johne’s disease. Vaccine, 29(29-30), 4709-4719. http://dx.doi.org/10.1016/j.vaccine.2011.04.090. PMid:21565243.

Park, K. T., ElNaggar, M. M., Abdellrazeq, G. S., Bannantine, J. P., Mack, V., Fry, L. M., & Davis, W. C. (2016). Phenotype and function of CD209+ bovine blood dendritic cells, monocyte-derived-dendritic cells and monocyte-derived macrophages. PLoS One, 11(10), e0165247. http://dx.doi.org/10.1371/journal.pone.0165247. PMid:27764236.

Verreck, F. A. W., de Boer, T., Langenberg, D. M. L., van der Zanden, L., & Ottenhoff, T. H. M. (2006). Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-g and CD40L-mediated costimulation. Journal of Leukocyte Biology, 79(2), 285-293. http://dx.doi.org/10.1189/jlb.0105015. PMid:16330536.

Ziegler, K., & Unanue, E. R. (1981). Identification of a macrophage antigen-processing event required for I-regionrestricted antigen presentation to T lymphocytes. Journal of Immunology (Baltimore, Md.: 1950), 127(5), 1869-1875. http://dx.doi.org/10.4049/jimmunol.127.5.1869. PMid:6795263.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Michelle Athena Decourcey, William Charles Davis, Cleverson de Souza