Addition of synthetic polymer in the freezing solution of mesenchymal stem cells from equine adipose tissue as a future perspective for reducing of DMSO concentration
PDF
XML

Keywords

regenerative therapy, horse, trehalose, superCool X-1000, cryopreservation.

How to Cite

Nascimento, C., Saraiva, M. V. A., Pereira, V. M., de Brito, D. C. C., de Aguiar, F. L. N., Alves, B. G., … Rodrigues, A. P. R. (2023). Addition of synthetic polymer in the freezing solution of mesenchymal stem cells from equine adipose tissue as a future perspective for reducing of DMSO concentration. Brazilian Journal of Veterinary Medicine, 45, e002523. https://doi.org/10.29374/2527-2179.bjvm002523

Abstract

The regenerative therapies with stem cells (SC) has been increased by the cryopreservation, permitting cell storage for extended periods. However, the permeating cryoprotectant agents (CPAs) such as dimethylsulfoxide (DMSO) can cause severe adverse effects. Therefore, this study evaluated equine mesenchymal stem cells derived from adipose tissue (eAT-MSCs) in fresh (Control) or after slow freezing (SF) in different freezing solutions (FS). The FS comprise DMSO and non-permeating CPAs [Trehalose (T) and the SuperCool X-1000 (X)] in association or not, totalizing seven different FS: (DMSO; T; X; DMSO+T; DMSO+X; T+X, and DMSO+T+X). Before and after cryopreservation were evaluated, viability, colony forming unit (CFU), and cellular differentiation capacity. After freezing-thawing, the viability of the eAT-MSCs reduced (P< 0.05) in all treatments compared to the control. However, the viability of frozen eAT-MSCs in DMSO (80.3 ± 0.6) was superior (P<0.05) to the other FS. Regarding CFU, no difference (P>0.05) was observed between fresh and frozen cells. After freezing-thawing, the eAT-MSCs showed osteogenic, chondrogenic, and adipogenic lineages differentiation potential. Nonetheless, despite the significative reduction in the osteogenic differentiation capacity between fresh and frozen cells, no differences (P > 0.05) were observed among FS. Furthermore, the number of chondrogenic differentiation cells frozen in DMSO+X solution reduced (P<0.05) comparing to the control, without differ (P>0.05) to the other FS. The adipogenic differentiation did not differ (P>0.05) among treatments. In conclusion, although these findings confirm the success of DMSO to cryopreserve eAT-MSCs, the Super Cool X-1000 could be a promise to reduce the DMSO concentration in a FS.

https://doi.org/10.29374/2527-2179.bjvm002523
PDF
XML

References

Badrzadeh, H., Najmabadi, S., Paymani, R., Macaso, T., Azadbadi, Z., & Ahmady, A. (2010). Super cool X-1000 and Super cool Z-1000, two ice blockers, and their effect on vitrification/warming of mouse embryos. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 151(1), 70-71. http://dx.doi.org/10.1016/j.ejogrb.2010.03.028. PMid:20423751.

Bourin, P., Bunnell, B. A., Casteilla, L., Dominici, M., Katz, A. J., March, K. L., Redl, H., Rubin, J. P., Yoshimura, K., & Gimble, J. M. (2013). Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy, 15(6), 641-648. http://dx.doi.org/10.1016/j.jcyt.2013.02.006. PMid:23570660.

Burk, J., Ribitsch, I., Gittel, C., Juelke, H., Kasper, C., Staszyk, C., & Brehm, W. (2013). Growth and differentiation characteristics of equine mesenchymal stromal cells derived from different sources. Veterinary Journal, 195(1), 98-106. http://dx.doi.org/10.1016/j.tvjl.2012.06.004. PMid:22841420.

Caruso, C., Rizzo, C., Mangano, S., Poli, A., Di Donato, P., Finore, I., Nicolaus, B., Di Marco, G., Michaud, L., & Lo Giudice, A. (2018). Production and biotechnological potential of extracellular polymeric substances from sponge-associated antarctic bacteria. Applied and Environmental Microbiology, 84(4), e01624-17. http://dx.doi.org/10.1128/AEM.01624-17. PMid:29180360.

Castro, S. V., Carvalho, A. A., Silva, C. M. G., Faustino, L. R., Figueiredo, J. R., & Rodrigues, A. P. R. (2011). Intracellular cryoprotectant agents: Characteristics and use of ovarian tissue and oocyte cryopreservation. Acta Scientiae Veterinariae, 39, 1-17.

Chabot, D., Tremblay, T., Paré, I., Bazin, R., & Loubaki, L. (2017). Transient warming events occurring after freezing impairs umbilical cord-derived mesenchymal stromal cells functionality. Cytotherapy, 19(8), 978-989. http://dx.doi.org/10.1016/j.jcyt.2017.04.005. PMid:28606762.

Chen, Q., Shou, P., Zheng, C., Jiang, M., Cao, G., Yang, Q., Cao, J., Xie, N., Velletri, T., Zhang, X., Xu, C., Zhang, L., Yang, H., Hou, J., Wang, Y., & Shi, Y. (2016). Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death and Differentiation, 23(7), 1128-1139. http://dx.doi.org/10.1038/cdd.2015.168. PMid:26868907.

De Rosa, A., De Francesco, F., Tirino, V., Ferraro, G. A., Desiderio, V., Paino, F., Pirozzi, G., D’Andrea, F., & Papaccio, G. (2009). A new method for cryopreserving adipose-derived stem cells: An attractive and suitable large-scale and long-term cell banking technology. Tissue Engineering. Part C, Methods, 15(4), 659-667. http://dx.doi.org/10.1089/ten.tec.2008.0674. PMid:19254116.

Deller, R. C., Vatish, M., Mitchell, D. A., & Gibson, M. I. (2014). Synthetic polymers enable non-vitreous cellular cryopreservation by reducing ice crystal growth during thawing. Nature Communications, 5(1), 3244. http://dx.doi.org/10.1038/ncomms4244. PMid:24488146.

Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., Deans, R. J., Keating, A., Prockop, D. J., & Horwitz, E. M. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells: The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315-317. http://dx.doi.org/10.1080/14653240600855905. PMid:16923606.

Durgam, S., & Stewart, M. (2017). Evidence supporting intralesional stem cell therapy to improve equine flexor tendon healing. Vet. Evid., 2(1). http://dx.doi.org/10.18849/ve.v2i1.50.

Elliott, G. D., Wang, S., & Fuller, B. J. (2017). Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology, 76, 74-91. http://dx.doi.org/10.1016/j.cryobiol.2017.04.004. PMid:28428046.

Feitosa, M. L. T., Sarmento, C. A. P., Bocabello, R. Z., Beltrão-Braga, P. C. B., Pignatari, G. C., Giglio, R. F., Miglino, M. A., Orlandin, J. R., & Ambrósio, C. E. (2017). Transplantation of human immature dental pulp stem cell in dogs with chronic spinal cord injury. Acta Cirurgica Brasileira, 32(7), 540-549. http://dx.doi.org/10.1590/ s0102-865020170070000005. PMid:28793038.

Frisbie, D. D., & Smith, R. K. W. (2010). Clinical update on the use of mesenchymal stem cells in equine orthopaedics. Equine Veterinary Journal, 42(1), 86-89. http://dx.doi.org/10.2746/042516409X477263. PMid:20121921.

Fülber, J., Maria, D. A., Silva, L. C. L. C., Massoco, C. O., Agreste, F., & Baccarin, R. Y. A. (2016). Comparative study of equine mesenchymal stem cells from healthy and injured synovial tissues: An in vitro assessment. Stem Cell Research & Therapy, 7(1), 35. http://dx.doi.org/10.1186/s13287-016-0294-3. PMid:26944403.

Ginani, F., Soares, D. M., & Barboza, C. A. G. (2012). Influência de um protocolo de criopreservação no rendimento in vitro de células-tronco derivadas do tecido adiposo. Revista Brasileira de Cirurgia Plástica, 27(3), 359-363. http://dx.doi.org/10.1590/S1983-51752012000300004.

Gonçalves, N. N., Ambrósio, C. E., & Piedrahita, J. A. (2014). Stem Cells and regenerative medicine in domestic and companion animals: A multispecies perspective. Reproduction in Domestic Animals, 49(Suppl. 4), 2-10. http://dx.doi.org/10.1111/rda.12392. PMid:25277427.

Gurruchaga, H., Ciriza, J., Saenz del Burgo, L., Rodriguez-Madoz, J. R., Santos, E., Prosper, F., Hernández, R. M., Orive, G., & Pedraz, J. L. (2015). Cryopreservation of microencapsulated murine mesenchymal stem cells genetically engineered to secrete erythropoietin. International Journal of Pharmaceutics, 485(1-2), 15-24. http://dx.doi.org/10.1016/j.ijpharm.2015.02.047. PMid:25708005.

Hackett, C. H., & Fortier, L. A. (2011). Embryonic stem cells and iPS cells: Sources and characteristics. The Veterinary Clinics of North America. Equine Practice, 27(2), 233-242. http://dx.doi.org/10.1016/j.cveq.2011.04.003. PMid:21872756.

Jo, C. H., Lee, Y. G., Shin, W. H., Kim, H., Chai, J. W., Jeong, E. C., Kim, J. E., Shim, H., Shin, J. S., Shin, I. S., Ra, J. C., Oh, S., & Yoon, K. S. (2014). Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: A proof-of-concept clinical trial. Stem Cells, 32(5), 1254-1266. http://dx.doi.org/10.1002/stem.1634. PMid:24449146.

Kaplan, A., Sackett, K., Sumstad, D., Kadidlo, D., & McKenna, D. H. (2017). Impact of starting material (fresh versus cryopreserved marrow) on mesenchymal stem cell culture. Transfusion, 57(9), 2216-2219. http://dx.doi.org/10.1111/trf.14192. PMid:28653392.

Khodadadi, K., Sumer, H., Pashaiasl, M., Lim, S., Williamson, M., & Verma, P. J. (2012). Induction of pluripotency in adult equine fibroblasts without c-MYC. Stem Cells International, 2012, 429160. http://dx.doi.org/10.1155/2012/429160. PMid:22550508.

Koga, H., Muneta, T., Ju, Y.-J., Nagase, T., Nimura, A., Mochizuki, T., Ichinose, S., von der Mark, K., & Sekiya, I. (2007). Synovial stem cells are regionally specified according to local microenvironments after implantation for cartilage regeneration. Stem Cells, 25(3), 689-696. http://dx.doi.org/10.1634/stemcells.2006-0281. PMid:17138960.

Maia, L., Dias, M. C., Moraes, C. N., Freitas-Dell’Aqua, C. P., Mota, L. S., Santiloni, V., & Cruz Landim-Alvarenga, F. (2017). Conditioned medium: A new alternative for cryopreservation of equine umbilical cord mesenchymal stem cells. Cell Biology International, 41(3), 239-248. http://dx.doi.org/10.1002/cbin.10708. PMid:27888544.

Mambelli, L. I., Santos, E. J. C., Frazão, P. J. R., Chaparro, M. B., Kerkis, A., Zoppa, A. L. V., & Kerkis, I. (2009). Characterization of equine adipose tissue-derived progenitor cells before and after cryopreservation. Tissue Engineering. Part C, Methods, 15(1), 87-94. http://dx.doi.org/10.1089/ten.tec.2008.0186. PMid:19196122.

Martinetti, D., Colarossi, C., Buccheri, S., Denti, G., Memeo, L., & Vicari, L. (2017). Effect of trehalose on cryopreservation of pure peripheral blood stem cells. Biomedical Reports, 6(3), 314-318. http://dx.doi.org/10.3892/br.2017.859. PMid:28451392.

Meryman, H. T. (2007). Cryopreservation of living cells: Principles and practice. Transfusion, 47(5), 935-945. http://dx.doi.org/10.1111/j.1537-2995.2007.01212.x. PMid:17465961.

Mitchell, A., Rivas, K. A., Smith III, R., & Watts, A. E. (2015). Cryopreservation of equine mesenchymal stem cells in 95% autologous serum and 5% DMSO does not alter post-thaw growth or morphology in vitro compared to fetal bovine serum or allogeneic serum at 20 or 95% and DMSO at 10 or 5%. Stem Cell Research & Therapy, 6(1), 231. http://dx.doi.org/10.1186/s13287-015-0230-y. PMid:26611913.

Montano Vizcarra, D. A., Silva, Y. S., Bruno, J. B., Brito, D. C. C., Berrocal, D. D., Silva, L. M., Morais, M. L. G. S., Alves, B. G., Alves, K. A., Cibin, F. W. S., Figueiredo, J. R., Zelinski, M. B., & Rodrigues, A. P. R. (2020). Use of synthetic polymers improves the quality of vitrified caprine preantral follicles in the ovarian tissue. Acta Histochemica, 122(2), 151484. http://dx.doi.org/10.1016/j.acthis.2019.151484. PMid:31902536.

Motta, J. P. R., Paraguassú-Braga, F. H., Bouzas, L. F., & Porto, L. C. (2014). Evaluation of intracellular and extracellular trehalose as a cryoprotectant of stem cells obtained from umbilical cord blood. Cryobiology, 68(3), 343-348. http://dx.doi.org/10.1016/j.cryobiol.2014.04.007. PMid:24769312.

Naaldijk, Y., Staude, M., Fedorova, V., & Stolzing, A. (2012). Effect of different freezing rates during cryopreservation of rat mesenchymal stem cells using combinations of hydroxyethyl starch and dimethylsulfoxide. BMC Biotechnology, 12(1), 49. http://dx.doi.org/10.1186/1472-6750-12-49. PMid:22889198.

Ranera, B., Lyahyai, J., Romero, A., Vázquez, F. J., Remacha, A. R., Bernal, M. L., Zaragoza, P., Rodellar, C., & Martín-Burriel, I. (2011). Immunophenotype and gene expression profiles of cell surface markers of mesenchymal stem cells derived from equine bone marrow and adipose tissue. Veterinary Immunology and Immunopathology, 144(1-2), 147-154. http://dx.doi.org/10.1016/j.vetimm.2011.06.033. PMid:21782255.

Renzi, S., Lombardo, T., Dotti, S., Dessì, S. S., De Blasio, P., & Ferrari, M. (2012). Mesenchymal stromal cell cryopreservation. Biopreservation and Biobanking, 10(3), 276-281. http://dx.doi.org/10.1089/bio.2012.0005. PMid:24835066.

Ribeiro, G., Massoco, C. O., & Lacerda Neto, J. C. (2012). Viabilidade celular da fração mononuclear da medula óssea e fração vascular estromal do tecido adiposo de equinos após o processo de congelamento e descongelamento. Pesquisa Veterinária Brasileira, 32(Suppl. 1), 118-124. http://dx.doi.org/10.1590/S0100-736X2012001300020.

Rodrigues, J. P., Paraguassú-Braga, F. H., Carvalho, L., Abdelhay, E., Bouzas, L. F., & Porto, L. C. (2008). Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood. Cryobiology, 56(2), 144-151. http://dx.doi.org/10.1016/j.cryobiol.2008.01.003. PMid:18313656.

Sauer-Heilborn, A., Kadidlo, D., & McCullough, J. (2004). Patient care during infusion of hematopoietic progenitor cells. Transfusion, 44(6), 907-916. http://dx.doi.org/10.1111/j.1537-2995.2004.03230.x. PMid:15157259.

Sharma, R. R., Pollock, K., Hubel, A., & McKenna, D. (2014). Mesenchymal stem or stromal cells: A review of clinical applications and manufacturing practices. Transfusion, 54(5), 1418-1437. http://dx.doi.org/10.1111/trf.12421. PMid:24898458.

Shu, Z., Heimfeld, S., & Gao, D. (2014). Hematopoietic SCT with cryopreserved grafts: Adverse reactions after transplantation and cryoprotectant removal before infusion. Bone Marrow Transplantation, 49(4), 469-476. http://dx.doi.org/10.1038/bmt.2013.152. PMid:24076548.

Silva, A. A. R., Rodrigues, C. G., & Silva, M. B. (2017). Avanços tecnológicos na criopreservação de células-tronco e tecidos, aplicados à terapia celular. Revista Bioética, 17, 13-18.

Solocinski, J., Osgood, Q., Wang, M., Connolly, A., Menze, M. A., & Chakraborty, N. (2017). Effect of trehalose as an additive to dimethyl sulfoxide solutions on ice formation, cellular viability, and metabolism. Cryobiology, 75, 134-143. http://dx.doi.org/10.1016/j.cryobiol.2017.01.001. PMid:28063960.

Sousa, W. B. (2014). Criopreservação de células tronco e suas aplicações. Revista Brasileira de Ciência, Tecnologia e Inovação, 1(1), 45-56. http://dx.doi.org/10.18554/rbcti.v1i1.737.

Thitilertdecha, P., Lohsiriwat, V., Poungpairoj, P., Tantithavorn, V. & Onlamoon, N. (2020). Extensive Characterization of Mesenchymal Stem Cell Marker Expression on Freshly Isolated and In Vitro Expanded Human Adipose-Derived Stem Cells from Breast Cancer Patients. Stem Cells Int. 8237197.

https://doi.org/10.1155/2020/8237197

Ting, A. Y., Yeoman, R. R., Campos, J. R., Lawson, M. S., Mullen, S. F., Fahy, G. M., & Zelinski, M. B. (2013). Morphological and functional preservation of pre-antral follicles after vitrification of macaque ovarian tissue in a closed system. Human Reproduction, 28(5), 1267-1279. http://dx.doi.org/10.1093/humrep/det032. PMid:23427232.

Trela, J. M., Spriet, M., Padgett, K. A., Galuppo, L. D., Vaughan, B., & Vidal, M. A. (2014). Scintigraphic comparison of intra-arterial injection and distal intravenous regional limb perfusion for administration of mesenchymal stem cells to the equine foot. Equine Veterinary Journal, 46(4), 479-483. http://dx.doi.org/10.1111/evj.12137. PMid:23834199.

Vidal, M. A., Kilroy, G. E., Lopez, M. J., Johnson, J. R., Moore, R. M., & Gimble, J. M. (2007). Characterization of equine adipose tissue-derived stromal cells: Adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Veterinary Surgery, 36(7), 613-622. http://dx.doi.org/10.1111/j.1532- 950X.2007.00313.x. PMid:17894587.

Vidane, A. S., Pinheiro, A. O., Casals, J. B., Passarelli, D., Hage, M., Bueno, R. S., Martins, D. S., & Ambrósio, C. E. (2017). Transplantation of amniotic membrane-derived multipotent cells ameliorates and delays the progression of chronic kidney disease in cats. Reproduction in Domestic Animals, 52(Suppl. 2), 316-326. http://dx.doi.org/10.1111/rda.12846. PMid:27774657.

Vidane, A. S., Zomer, H. D., Oliveira, B. M. M., Guimarães, C. F., Fernandes, C. B., Perecin, F., Silva, L. A., Miglino, M. A., Meirelles, F. V., & Ambrósio, C. E. (2013). Reproductive stem cell differentiation: Extracellular matrix, tissue microenvironment, and growth factors direct the mesenchymal stem cell lineage commitment. Reproductive Sciences (Thousand Oaks, Calif.), 20(10), 1137-1143. http://dx.doi.org/10.1177/1933719113477484. PMid:23420825.

Windrum, P., Morris, T. C. M., Drake, M. B., Niederwieser, D., & Ruutu, T. (2005). Variation in dimethyl sulfoxide use in stem cell transplantation: A survey of EBMT centres. Bone Marrow Transplantation, 36(7), 601-603. http://dx.doi.org/10.1038/sj.bmt.1705100. PMid:16044141.

Wowk, B., Leitl, E., Rasch, C. M., Mesbah-Karimi, N., Harris, S. B., & Fahy, G. M. (2000). Vitrification enhancement by synthetic ice blocking agents. Cryobiology, 40(3), 228-236. http://dx.doi.org/10.1006/cryo.2000.2243. PMid:10860622.

Zomer, H. D., Vidane, A. S., Gonçalves, N. N., & Ambrósio, C. E. (2015). Mesenchymal and induced pluripotent stem cells: General insights and clinical perspectives. Stem Cells and Cloning: Advances and Applications, 8, 125-134. http://dx.doi.org/10.2147/SCCAA.S88036. PMid:26451119.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Cátia Nascimento, Márcia Viviane Alves Saraiva, Vitoria Mattos Pereira, Danielle Cristina Calado de Brito, Francisco Léo Nascimento de Aguiar, Benner Geraldo Alves, Kelly Cristine Santos Roballo, José Ricardo de Figueiredo, Carlos Eduardo Ambrósio, Ana Paula Ribeiro Rodrigues