Genetic profiling of hsp70 gene in local Iraqi goats
PDF
XML

Keywords

HSP70 gene, goats, polymorphism, molecular analysis.

How to Cite

Habib, H. N., Saleh, W. M. M., & Gheni, Q. J. (2022). Genetic profiling of hsp70 gene in local Iraqi goats. Brazilian Journal of Veterinary Medicine, 44, e004122. https://doi.org/10.29374/2527-2179.bjvm004121

Abstract

Animals display numerous physiological and behavioral responses that reduce the effects of heat stress. Moreover, genetic variance is strongly associated with responses to heat stress, including variants of heat shock proteins (HSPs) that are necessary for thermoregulation and stress resistance. Herein, we performed the molecular profiling of the HSP 70 gene, and its polymorphism was demonstrated as a possible factor in the stress tolerance of local Iraqi goats. A number of different mutations were found owing to seven main polymorphisms. Results indicated the occurrence of silent and missense mutations in sequences obtained for Iraqi local goats. Genetic diversity was observed in the HSP70 gene of Iraqi local goats on the basis of phylogenetic-tree analysis as some mutations occurred once whereas others occurred multiple times. The polymorphisms LC616787, LC616788, and LC616791 were combined with the reference gene in the same branch, whereas polymorphisms (LC616785 and LC616786) and (LC616789 and LC616790) met in different branches, respectively. Moreover, all studied proteins had mismatches in their three-dimensional structures. Therefore, the presence of specific genetic differences within the HSP70 gene in Iraqi goats can increase the possibility of selecting animals more suitable to various levels of stress.

https://doi.org/10.29374/2527-2179.bjvm004121
PDF
XML

References

Abbas, Z., Hu, L., Fang, H., Sammad, A., Kang, L., Brito, L. F., Xu, Q., & Wang, Y. (2020). Association analysis of polymorphisms in the 5′ flanking region of the HSP70 gene with blood biochemical parameters of lactating Holstein cows under heat and cold stress. Animals, 10(11), 2016. http://dx.doi.org/10.3390/ani10112016. PMid:33147724.

Abhijith, A., Sejian, V., Ruban, W., Krishnan, G., Bagath, M., Pragna, P., Manjunathareddy, G. B., & Bhatta, R. (2021). Summer season induced heat stress associated changes on meat production and quality characteristics, myostatin and HSP70 gene expression patterns in indigenous goat. Small Ruminant Research, 203, 106490. http://dx.doi.org/10.1016/j.smallrumres.2021.106490.

Afsal, A., Bagath, M., Sejian, V., Krishnan, G., Beena, V., & Bhatta, R. (2021). Effect of heat stress on HSP70 gene expression pattern in different vital organs of Malabari goats. Biological Rhythm Research, 52(3), 380-394. http://dx.doi.org/10.1080/09291016.2019.1600270.

Bhat, S., Kumar, P., Kashyap, N., Deshmukh, B., Dige, M. S., Bhushan, B., Chauhan, A., Kumar, A., & Singh, G. (2016). Effect of heat shock protein 70 polymorphism on thermotolerance in Tharparkar cattle. Veterinary World, 9(2), 113-117. http://dx.doi.org/10.14202/vetworld.2016.113-117. PMid:27051194.

Chatterjee, S., & Burns, T. F. (2017). Targeting heat shock proteins in cancer: A promising therapeutic approach. International Journal of Molecular Sciences, 18(9), 1978. http://dx.doi.org/10.3390/ijms18091978. PMid:28914774.

Chen, Y., Lu, H., Zhang, N., Zhu, Z., Wang, S., & Li, M. (2020). PremPS: Predicting the impact of missense mutations on protein stability. PLoS Computational Biology, 16(12), e1008543. http://dx.doi.org/10.1371/journal.pcbi.1008543. PMid:33378330.

Collier, R. J., Baumgard, L. H., Zimbelman, R. B., & Xiao, Y. (2019). Heat stress: Physiology of acclimation and adaptation. Animal Frontiers, 9(1), 12-19. http://dx.doi.org/10.1093/af/vfy031. PMid:32002234.

Dang, W., Xu, N., Zhang, W., Gao, J., Fan, H., & Lu, H. (2018). Differential regulation of Hsp70 expression in six lizard species under normal and high environmental temperatures. Pakistan Journal of Zoology, 50(3), 1043-1051. http://dx.doi.org/10.17582/journal.pjz/2018.50.3.1043.1051.

Dauphin, L. A., Walker, R. E., Petersen, J. M., & Bowen, M. D. (2011). Comparative evaluation of automated and manual commercial DNA extraction methods for detection of Francisellatularensis DNA from suspensions and spiked swabs by real-time polymerase chain reaction. Diagnostic Microbiology and Infectious Disease, 70(3), 299-306. http://dx.doi.org/10.1016/j.diagmicrobio.2011.02.010. PMid:21546201.

Desjardins, P., & Conklin, D. (2010). NanoDropmicrovolume quantitation of nucleic acids. Journal of Visualized Experiments, 45, e2565. PMid:21189466.

Edkins, A. L., Price, J. T., Pockley, A. G., & Blatch, G. L. (2018). Heat shock proteins as modulators and therapeutic targets of chronic disease: An integrated perspective. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1738), 20160521. http://dx.doi.org/10.1098/rstb.2016.0521. PMid:29203706.

Fatima, F., Nadeem, A., & Javed, M. (2019). Molecular characterization of heat shock protein 70-1 gene of Capra aegagrusblythi. Pakistan Journal of Zoology, 51(1), 195-203. http://dx.doi.org/10.17582/journal.pjz/2019.51.1.195.203.

Food and Agriculture Organization of the United Nations – FAO. (2018). Iraq: Restoration of agriculture and water systems sub-programme 2018-2020. FAO.

Gade, N., Mahapatra, R. K., Sonawane, A., Singh, V. K., Doreswamy, R., & Saini, M. (2010). Molecular characterization of heat shock protein 70-1 gene of goat (Capra hircus). Molecular Biology International, 2010, 108429. http://dx.doi.org/10.4061/2010/108429. PMid:22110953.

García-Alegría, A. M., Anduro-Corona, I., Pérez-Martínez, C. J., Corella-Madueño, M. A. G., Rascón-Durán, M. L., & Astiazaran-Garcia, H. (2020). Quantification of DNA through the NanoDrop spectrophotometer: Methodological validation using standard reference material and Sprague Dawley rat and human DNA. International Journal of Analytical Chemistry, 2020, 8896738. http://dx.doi.org/10.1155/2020/8896738. PMid:33312204.

Goymer, P. (2007). Synonymous mutations break their silence. Nature Reviews Genetics, 8(2), 92.

Habib, H. N. (2020). Molecular characterization of heat shock protein 70 gene in Iraqi buffalo. Iraqi Journal of Veterinary Sciences, 34(1), 139-143. http://dx.doi.org/10.33899/ijvs.2019.125633.1116.

Habib, H. N., Hassan, A. F., & Khudaier, B. Y. (2017). Molecular detection of polymorphism of heat shock protein 70 (HSP70) in the semen of Iraqi Holstein bulls. Asian Journal of Animal Sciences, 11(3), 132-139. http://dx.doi.org/10.3923/ajas.2017.132.139.

Habib, H. N., Karomy, A. S., Gheni, Q. J., & Saleh, W. M. M. (2020). Molecular detected of heat shock protein70 gene in Layer hens (Lohmann breed). IOP Conference Series: Materials Science and Engineering, 928(6), 062017. http://dx.doi.org/10.1088/1757-899X/928/6/062017.

Habib, H. N., Khudaier, B. Y., & Hassan, A. F. (2018a). Molecular detection of polymorphism of heat shock protein 70 (hsp70) in the semen of Arabi rams. Basrah Journal of Veterinary Research, 17(3), 156-166.

Habib, H. N., Khudaier, B. Y., Hassan, A. F., & Saleh, W. M. (2018b). The association of the polymorphism and gene expression of heat shock protein hsp70 gene in winter and summer in the semen of Holstein bulls born in Iraq. Basrah Journal of Veterinary Research, 17(3), 280-289.

Hassan, K., Born, C., & Nordqvist, P. (2018). Iraq: Climate-related security risk assessment. The Expert Working Group on Climate-related Security Risks.

Juma, K. H., & Alkass, J. E. (2005). Native goats of Iraq: A review. Dirasat, Agricultural Sciences, 32(2), 180-188.

Karademir, B., & Sari-Kaplan, G. (2018). Heat Shock Protein (HSP). In S. Choi (Ed.), Encyclopedia of signaling molecules (pp. 2330-2339). Springer. http://dx.doi.org/10.1007/978-3-319-67199-4_101809.

Kõressaar, T., Lepamets, M., Kaplinski, L., Raime, K., Andreson, R., & Remm, M. (2018). Primer3_masker: Integrating masking of template sequence with primer design software. Bioinformatics, 34(11), 1937-1938. http://dx.doi.org/10.1093/bioinformatics/bty036. PMid:29360956.

Kumar, R., Gupta, I. D., Verma, A., Verma, N., Magotra, A., & Vineeth, M. R. (2015). Molecular characterization and polymorphism detection in HSPB6 gene in Sahiwal cattle. Indian Journal of Animal Research, 49(5), 595-598. http://dx.doi.org/10.18805/ijar.5568.

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549. http://dx.doi.org/10.1093/ molbev/msy096. PMid:29722887.

Minde, D. P., Anvarian, Z., Rüdiger, S. G., & Maurice, M. M. (2011). Messing up disorder: How do missense mutations in the tumor suppressor protein APC lead to cancer? Molecular Cancer, 10(1), 101. http://dx.doi. org/10.1186/1476-4598-10-101. PMid:21859464.

Mohalik, P. K., Sahoo, S. S., Mishra, C., Dash, S. K., & Nayak, G. (2021). Novel polymorphism of HSP70 gene affected caprine physiological vital parameters. Animal Biotechnology, 32(5), 550-557. PMid:32049580.

Najafi, M., Mianji, G. R., & Pirsaraie, Z. A. (2014). Cloning and comparative analysis of gene structure in promoter site of alpha-s1 casein gene in Naeinian goat and sheep. Meta Gene, 2, 854-861. http://dx.doi.org/10.1016/j.mgene.2014.11.001. PMid:25606467.

Nikbin, S., Panandam, J. M., Yaakub, H., Murugaiyah, M., & Sazili, A. Q. (2014). Novel SNPs in heat shock protein 70 gene and their association with sperm quality traits of Boer goats and Boer crosses. Animal Reproduction Science, 146(3-4), 176-181. http://dx.doi.org/10.1016/j.anireprosci.2014.03.001. PMid:24674824.

Novick, L. R., & Fuselier, L. C. (2019). Perception and conception in understanding evolutionary trees. Cognition, 192, 104001. http://dx.doi.org/10.1016/j.cognition.2019.06.013. PMid:31254891.

Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., & van Ypserle, J. P. (2014). Climate change 2014: Synthesis report. Intergovernmental Panel on Climate Change.

Pawar, H. N., Agrawal, R. K., & Brah, G. S. (2013). Expression, purification and characterization of recombinant Heat Shock Protein 70 (HSP70) from sheep and goat species. International Journal of Current Microbiology and Applied Sciences, 2(11), 440-452.

Rashamol, V. P., Sejian, V., Bagath, M., Krishnan, G., Archana, P. R., & Bhatta, R. (2018). Physiological adaptability of livestock to heat stress: An updated review. Journal of Animal Behaviour and Biometeorology, 6(3), 62-71. http://dx.doi.org/10.31893/2318-1265jabb.v6n3p62-71.

Ravaschiere, A., Cutler, C., Edleson, K., Halem, Z., Magun, H., Meckler, F., & Cox, R. (2017). Quantification of heat shock protein 70 and acetylcholinesterase over a time course suggests environmental adaptation in a foundational molluscan species. Ecotoxicology and Environmental Safety, 142, 222-229. http://dx.doi.org/10.1016/j.ecoenv.2017.04.003. PMid:28412626.

Raza, S. H. A., Hassanin, A. A., Dhshan, A. I., Abdelnour, S. A., Khan, R., Mei, C., & Zan, L. (2021). In silico genomic and proteomic analyses of three heat shock proteins (HSP70, HSP90-α, and HSP90-β) in even-toed ungulates. Electronic Journal of Biotechnology, 53, 61-70. http://dx.doi.org/10.1016/j.ejbt.2021.07.002.

Richter, K., Haslbeck, M., & Buchner, J. (2010). The heat shock response: Life on the verge of death. Molecular Cell, 40(2), 253-266. http://dx.doi.org/10.1016/j.molcel.2010.10.006. PMid:20965420.

Rodrigues, C. H., Pires, D. E., & Ascher, D. B. (2018). DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Research, 46(W1), W350-W355. http://dx.doi.org/10.1093/nar/gky300. PMid:29718330.

Rong, Y., Zeng, M., Guan, X., Qu, K., Liu, J., Zhang, J., Chen, H., Huang, B., & Lei, C. (2019). Association of HSF1 genetic variation with heat tolerance in Chinese cattle. Animals, 9(12), 1027. http://dx.doi.org/10.3390/ ani9121027. PMid:31775331.

Sallam, A. M. (2021). A missense mutation in the coding region of the toll-like receptor 4 gene affects milk traits in Barki sheep. Animal Bioscience, 34(4), 489-498. http://dx.doi.org/10.5713/ajas.19.0989. PMid:32819071.

Shende, P., Bhandarkar, S., & Prabhakar, B. (2019). Heat shock proteins and their protective roles in stem cell biology. Stem Cell Reviews and Reports, 15(5), 637-651. http://dx.doi.org/10.1007/s12015-019-09903-5. PMid:31254166.

Silver, J. T., & Noble, E. G. (2012). Regulation of survival gene HSP70. Cell Stress & Chaperones, 17(1), 1-9. http://dx.doi.org/10.1007/s12192-011-0290-6. PMid:21874533.

Simoncini, D., & Zhang, K. Y. J. (2019). Population-based sampling and fragment-based de novo protein structure prediction. Encyclopedia of Bioinformatics and Computational Biology, 1, 774-784. http://dx.doi.org/10.1016/ B978-0-12-809633-8.20507-4.

Singh, R., Kaushik, R., Dige, M. S., & Rout, P. K. (2020). Identification of mutation in TMB1M6 gene in response to heat stress in goats. Biological Rhythm Research, 51(7), 995-1005. http://dx.doi.org/10.1080/09291016.201 8.1563322.

Sodhi, M., Mukesh, M., Kishore, A., Mishra, B. P., Kataria, R. S., & Joshi, B. K. (2013). Novel polymorphisms in UTR and coding region of inducible heat shock protein 70.1 gene in tropically adapted Indian zebu cattle (Bos indicus) and riverine buffalo (Bubalus bubalis). Gene, 527(2), 606-615. http://dx.doi.org/10.1016/j.gene.2013.05.078. PMid:23792016.

Tripathy, K., Sodhi, M., Kataria, R. S., Chopra, M., & Mukesh, M. (2021). In silico analysis of HSP70 gene family in bovine genome. Biochemical Genetics, 59(1), 134-158. http://dx.doi.org/10.1007/s10528-020-09994-7. PMid:32840700.

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., Beer, T., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296-W303. http://dx.doi.org/10.1093/nar/gky427. PMid:29788355.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Hassan Nima Habib, Wessam Monther Mohammed Saleh, Qutaiba Jassim Gheni