MRI abnormalities in a severe cognitive impairment mimicking a forebrain lesion in a geriatric dog
PDF
XML

Keywords

Canine Cognitive Dysfunction (CCD), Magnetic Resonance Imaging (MRI), neurology, aging, canine

How to Cite

Burbaitė, E., Gradeckienė, A., Juodžentė, D., & Jankauskas, M. . (2022). MRI abnormalities in a severe cognitive impairment mimicking a forebrain lesion in a geriatric dog. Brazilian Journal of Veterinary Medicine, 44, e001022. https://doi.org/10.29374/2527-2179.bjvm001022

Abstract

Canine Cognitive Dysfunction is a neurological condition, that causes dogs to experience a wide variety of clinical signs. On rare occasions the symptoms may be unusual and severe, therefore they reminiscent of another disease. In this case report a 16 year and 8-month-old intact female poodle presented with circling, head pressing, and generalized ataxia. Prior clinical and neurologic examinations indicated the neurolocalisation to be forebrain. Morphometric brain parameters in MRI indicated otherwise. Quantitative MRI parameters such as the ventricle-brain index, interthalamic adhesion thickness, area, and the ratio of the interthalamic adhesion thickness to brain height may aid in the diagnosis of CCD.

https://doi.org/10.29374/2527-2179.bjvm001022
PDF
XML

References

Bain, M. J., Hart, B. L., Cliff, K. D., & Ruehl, W. W. (2001). Predicting behavioral changes associated with age-related cognitive impairment in dogs. Journal of the American Veterinary Medical Association, 218(11), 1792-1795. http://dx.doi.org/10.2460/javma.2001.218.1792. PMid:11394832.

Borràs, D., Ferrer, I., & Pumarola, M. (1999). Age-related changes in the brain of the dog. Veterinary Pathology, 36(3), 202-211. http://dx.doi.org/10.1354/vp.36-3-202. PMid:10332828.

Cotman, C. W., & Head, E. (2008). The canine (dog) model of human aging and disease: Dietary, environmental and immunotherapy approaches. Journal of Alzheimer’s Disease, 15(4), 685-707. http://dx.doi.org/10.3233/ JAD-2008-15413. PMid:19096165.

Cotman, C. W., Head, E., Muggenburg, B. A., Zicker, S., & Milgram, N. W. (2002). Brain aging in the canine: a diet enriched in antioxidants reduces cognitive dysfunction. Neurobiology of Aging, 23(5), 809-818. http://dx.doi.org/10.1016/S0197-4580(02)00073-8. PMid:12392784.

Dewey, C. W., Rishniw, M., Johnson, P. J., Davies, E. S., Sackman, J. J., O’Donnell, M., Platt, S., & Robinson, K. (2020). Interthalamic adhesion size in aging dogs with presumptive spontaneous brain microhemorrhages: a comparative retrospective MRI study of dogs with and without evidence of canine cognitive dysfunction. PeerJ, 8, e9012. http://dx.doi.org/10.7717/peerj.9012. PMid:32322448.

Dewey, C. W., Rishniw, M., Johnson, P. J., Platt, S., Robinson, K., Sackman, J., & O’Donnell, M. (2021). Canine cognitive dysfunction patients have reduced total hippocampal volume compared with aging control dogs: a comparative magnetic resonance imaging study. Open Veterinary Journal, 10(4), 438-442. http://dx.doi. org/10.4314/ovj.v10i4.11. PMid:33614439.

Fast, R., Schütt, T., Toft, N., Møller, A., & Berendt, M. (2013). An observational study with long-term follow-up of canine cognitive dysfunction: clinical characteristics, survival, and risk factors. Journal of Veterinary Internal Medicine, 27(4), 822-829. http://dx.doi.org/10.1111/jvim.12109. PMid:23701137.

González-Soriano, J., Marín García, P., Contreras-Rodríguez, J., Martínez-Sainz, P., & Rodríguez-Veiga, E. (2001). Age-related changes in the ventricular system of the dog brain. Annals of Anatomy = Anatomischer Anzeiger: Official Organ of the Anatomische Gesellschaft, 183(3), 283-291. http://dx.doi.org/10.1016/S0940-9602(01)80236- 3. PMid:11396800.

Hasegawa, D., Yayoshi, N., Fujita, Y., Fujita, M., & Orima, H. (2005). Measurement of interthalamic adhesion thickness as a criteria for brain atrophy in dogs with and without cognitive dysfunction (dementia). Veterinary Radiology & Ultrasound, 46(6), 452-457. http://dx.doi.org/10.1111/j.1740-8261.2005.00083.x. PMid:16396259.

Head, E. (2011). Neurobiology of the aging dog. Age (Dordrecht, Netherlands), 33(3), 485-496. http://dx.doi.org/10.1007/s11357-010-9183-3. PMid:20845082.

Kimotsuki, T., Nagaoka, T., Yasuda, M., Tamahara, S., Matsuki, N., & Ono, K. (2005). Changes of magnetic resonance imaging on the brain in beagle dogs with aging. The Journal of Veterinary Medical Science, 67(10), 961-967. http://dx.doi.org/10.1292/jvms.67.961. PMid:16276050.

Landsberg, G. (2005). Therapeutic agents for the treatment of cognitive dysfunction syndrome in senior dogs. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 29(3), 471-479. http://dx.doi.org/10.1016/j. pnpbp.2004.12.012. PMid:15795056.

Laubner, S., Ondreka, N., Failing, K., Kramer, M., & Schmidt, M. J. (2015). Magnetic resonance imaging signs of high intraventricular pressure-comparison of findings in dogs with clinically relevant internal hydrocephalus and asymptomatic dogs with ventriculomegaly. BMC Veterinary Research, 11, 181. http://dx.doi.org/10.1186/ s12917-015-0479-5. PMid:26231840.

Madari, A., Farbakova, J., Katina, S., Smolek, T., Novak, P., Weissova, T., Novak, M., & Zilka, N. (2015). Assessment of severity and progression of canine cognitive dysfunction syndrome using the CAnine DEmentia Scale (CADES). Applied Animal Behaviour Science, 171, 138-145. http://dx.doi.org/10.1016/j.applanim.2015.08.034.

Noh, D., Choi, S., Choi, H., Lee, Y., & Lee, K. (2017). Evaluation of interthalamic adhesion size as an indicator of brain atrophy in dogs with and without cognitive dysfunction. Veterinary Radiology & Ultrasound, 58(5), 581-587. http://dx.doi.org/10.1111/vru.12528. PMid:28707338.

Tapp, P. D., Head, K., Head, E., Milgram, N. W., Muggenburg, B. A., & Su, M. Y. (2006). Application of an automated voxel-based morphometry technique to assess regional gray and white matter brain atrophy in a canine model of aging. NeuroImage, 29(1), 234-244. http://dx.doi.org/10.1016/j.neuroimage.2005.07.043. PMid:16275022.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Evelina Burbaitė, Aistė Gradeckienė, Dalia Juodžentė, Martinas Jankauskas