Abstract
This manuscript aims to provide a simple and concise discussion on heart rate variability (HRV) for small animal veterinarians. Despite the fact that heart rate variability analysis techniques have been used for quite a long time in medical sciences, it seems to be not completely understood by a large fraction of veterinarian professionals, thereby, reducing the possible benefits to patients that could arise from such information. The analysis of the R-R intervals enables the veterinarian to evaluate autonomic sympathetic and parasympathetic modulation of the heart, composing the so-called cardiac autonomic balance. Several pathophysiological states lead to profound changes in autonomic balance, especially in the cardiovascular system. Therefore, heart rate variability methods remain a valuable and powerful tool for the diagnosis and prognosis of cardiovascular diseases.
References
Abbott, J. A. (2005). Heart rate and heart rate variability of healthy cats in home and hospital environments. Journal of Feline Medicine and Surgery, 7(3), 195-202. http://dx.doi.org/10.1016/j.jfms.2004.12.003. PMid:15922226.
Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Berger, A. C., & Cohen, R. J. (1981). Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. Science, 213(4504), 220-222. http://dx.doi.org/10.1126/science.6166045. PMid:6166045.
Alfonso, A., Le Sueur, A. N. V., Geraldes, S. S., Guimarães-Okamoto, P. T. C., Tsunemi, M. H., Santana, D. F., Ribeiro, V. R. F., Melchert, A., Chiacchio, S. B., & Lourenço, M. L. G. (2020). Heart rate variability and electrocardiographic parameters predictive of arrhythmias in dogs with Stage IV chronic kidney disease undergoing intermittent haemodialysis. Animals: an Open Access Journal from MDPI, 10(10), 1829.
Altimiras, J. (1999). Understanding autonomic sympathovagal balance from short-term heart rate variations. Are we analyzing noise? Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 124(4), 447-460. http://dx.doi.org/10.1016/S1095-6433(99)00137-3. PMid:10682243.
Altimiras, J., Feliu, M., Aissaoui, A., & Tort, L. (1994). Computing heart rate variability using spectral analysis techniques: HRVUAB, a ready-to-use program. Computer Applications in the Biosciences, 10(5), 559-562. http://dx.doi.org/10.1093/bioinformatics/10.5.559. PMid:7828074.
Baisan, R. A., Condurachi, E. I., & Vulpe, V. (2020). Short-term heart-rate variability in healthy small and medium-sized dogs over a five-minute measuring period. Journal of Veterinary Research, 64(1), 161-167. http://dx.doi.org/10.2478/jvetres-2020-0013. PMid:32258813.
Belova, N. Y., Mihaylov, S. V., & Piryova, B. G. (2007). Wavelet transform: A better approach for the evaluation of instantaneous changes in heart rate variability. Autonomic Neuroscience, 131(1–2), 107-122. http://dx.doi. org/10.1016/j.autneu.2006.07.006. PMid:16942920.
Billman, G. E. (2011). Heart rate variability – A historical perspective. Frontiers in Physiology, 2(86), 86. PMid:22144961.
Blake, R. R., Shaw, D. J., Culshaw, G. J., & Martinez-Pereira, Y. (2018). Poincaré plots as a measure of heart rate variability in healthy dogs. Journal of Veterinary Cardiology, 20(1), 20-32. http://dx.doi.org/10.1016/j.jvc.2017.10.006. PMid:29277470.
Bogucki, S., & Noszczyk-Nowak, A. (2017). Short-term heart rate variability in dogs with sick sinus syndrome or chronic mitral valve disease as compared to healthy controls. Polish Journal of Veterinary Sciences, 20(1), 167-172. http://dx.doi.org/10.1515/pjvs-2017-0021. PMid:28525326.
Borgarelli, M., Ferasin, L., Lamb, K., Bussadori, C., Chiavegato, D., D’Agnolo, G., Migliorini, F., Poggi, M., Santilli, R. A., Guillot, E., Garelli-Paar, C., Toschi Corneliani, R., Farina, F., Zani, A., Dirven, M., Smets, P., Guglielmini, C., Oliveira, P., Di Marcello, M., Porciello, F., Crosara, S., Ciaramella, P., Piantedosi, D., Smith, S., Vannini, S., Dall’Aglio, E., Savarino, P., Quintavalla, C., Patteson, M., Silva, J., Locatelli, C., & Baron Toaldo, M. (2020). DELay of Appearance of sYmptoms of Canine Degenerative Mitral Valve Disease Treated with Spironolactone and Benazepril: The DELAY Study. Journal of Veterinary Cardiology, 27, 34-53. http://dx.doi.org/10.1016/j.jvc.2019.12.002. PMid:32032923.
Calvert, C. A., & Wall, M. (2001). Effect of severity of myocardial failure on heart rate variability in Doberman Pinschers with and without echocardiographic evidence of dilated cardiomyopathy. Journal of the American Veterinary Medical Association, 219(8), 1084-1088. http://dx.doi.org/10.2460/javma.2001.219.1084. PMid:11700705.
Fujii, Y., & Wakao, Y. (2003). Spectral analysis of heart rate variability in dogs with mild mitral regurgitation. American Journal of Veterinary Research, 64(2), 145-148. http://dx.doi.org/10.2460/ajvr.2003.64.145. PMid:12602581.
Gianfranchesco Filippi, M., de Castro Ferreira Lima, M., Paes, A. C., Sarita Cruz Aleixo, A., Oba, E., Ferreira de Souza, F., Kiomi Takahira, R., & Gomes Lourenço, M. L.. (2019). Evaluation of heart rate variability and behavior of electrocardiographic parameters in dogs affected by chronic Monocytic ehrlichiosis. PLoS One, 14(5), e0216552. PMid:31125348.
Hezzell, M. J., Sleeper, M., Ferrari, J., & Arndt, J. (2018). Sample size determination for evaluation of time domain heart rate variability indices in canine lameness. Journal of the American Animal Hospital Association, 54(5), 235-238. http://dx.doi.org/10.5326/JAAHA-MS-6533. PMid:30040442.
Jiménez, R. F., Günther, B., & Torres, P. (2001). Time-frequency analysis of arterial pressure oscillations in anesthetized dogs: Effects of standardized hemorrhages. Shock (Augusta, Ga.), 15(2), 143-150. http://dx.doi. org/10.1097/00024382-200115020-00011. PMid:11220643.
Jiménez, R. F., Torres, P., Günther, B., Morgado, E., & Jiménez, C. A. (2004). Wavelet and Fourier analysis of ventricular and main arteries pulsations in anesthetized dogs. Biological Research, 37(3), 431-447. http://dx.doi.org/10.4067/S0716-97602004000300008. PMid:15515968.
Lee, S., Khrestian, C. M., Sahadevan, J., & Waldo, A. L. (2020). Reconsidering the multiple wavelet hypothesis of atrial fibrillation. Heart Rhythm, 17(11), 1976-1983. http://dx.doi.org/10.1016/j.hrthm.2020.06.017. PMid:32585192.
Li, K., Rüdiger, H., & Ziemssen, T. (2019). Spectral analysis of heart rate variability: time window matters. Frontiers in Neurology, 10, 545. http://dx.doi.org/10.3389/fneur.2019.00545. PMid:31191437.
Matsunaga, T., Harada, T., Mitsui, T., Inokuma, M., Hashimoto, M., Miyauchi, M., Murano, H., & Shibutani, Y. (2001). Spectral analysis of circadian rhythms in heart rate variability of dogs. American Journal of Veterinary Research, 62(1), 37-42. http://dx.doi.org/10.2460/ajvr.2001.62.37. PMid:11197557.
Minors, S. L., & O’Grady, M. R. (1997). Heart rate variability in the dog: Is it too variable? Canadian Journal of Veterinary Research, 61(2), 134-144. PMid:9114965.
Morettin, P. A. (1999). Ondas e Ondaletas. Da análise de Fourier à análise de Ondaletas de Série Temporais. São Paulo: EDUSP.
Oliveira, M. S., Muzzi, R. A. L., Araújo, R. B., Muzzi, L. A. L., Ferreira, D. F., & Silva, E. F. (2014). Heart rate variability and arrhythmias evaluated with Holter in dogs with degenerative mitral valve disease. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 66(2), 425-432. http://dx.doi.org/10.1590/1678-41626097.
Palazzolo, J. A., Estafanous, F. G., & Murray, P. A. (1998). Entropy measures of heart rate variation in conscious dogs. The American Journal of Physiology, 274(4), H1099-H1105. PMid:9575912.
Piccirillo, G., Ogawa, M., Song, J., Chong, V. J., Joung, B., Han, S., Magrí, D., Chen, L. S., Lin, S. F., & Chen, P. S. (2009). Power spectral analysis of heart rate variability and autonomic nervous system activity measured directly in healthy dogs and dogs with tachycardia-induced heart failure. Heart Rhythm, 6(4), 546-552. http://dx.doi.org/10.1016/j.hrthm.2009.01.006. PMid:19324318.
Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences of the United States of America, 88(6), 2297-2301. http://dx.doi.org/10.1073/pnas.88.6.2297. PMid:11607165.
Pirintr, P., Saengklub, N., Limprasutr, V., Sawangkoon, S., & Kijtawornrat, A. (2017). Sildenafil improves heart rate variability in dogs with asymptomatic myxomatous mitral valve degeneration. The Journal of Veterinary Medical Science, 79(9), 1480-1488. http://dx.doi.org/10.1292/jvms.17-0016. PMid:28717064.
Rajendra Acharya, U., Paul Joseph, K., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). Heart rate variability: a review. Medical & Biological Engineering & Computing, 44(12), 1031-1051. http://dx.doi.org/10.1007/s11517-006-0119-0. PMid:17111118.
Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, 258. http://dx.doi.org/10.3389/fpubh.2017.00258. PMid:29034226.
Spier, A. W., & Meurs, K. M. (2004). Assessment of heart rate variability in Boxers with arrhythmogenic right ventricular cardiomyopathy. Journal of the American Veterinary Medical Association, 224(4), 534-537. http:// dx.doi.org/10.2460/javma.2004.224.534. PMid:14989545.
Task Force of the European Society of Cardiology. (1996). Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354-381.
Wallisch, P., Lusingnan, M. E., Benayoun, M. D., Baker, T. I., Dickey, A. S., & Hastopoulos, N. G. (2009). Frequency analysis Part II: Nonstationary signals and spectrograms. In P. Wallisch, M. E. Lusingnan & M. D. Benayoun. MATLAB for neuroscientists an introduction to scientific computing in MATLAB (pp. 117-124). Cambridge: Academic Press.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2021 Luciano Gonçalves Fernandes, Fernando de Azevedo Cruz Seara