Abstract
In recent years, there has been an increase in infections caused by arboviruses in tropical countries, resulting in 700,000 deaths yearly; this is now considered a worldwide public health problem. In Brazil, dengue, Zika, and chikungunya are the main circulating arboviruses, which can be transmitted by the same vectors (Aedes aegypti and Aedes albopictus). In addition, more than 80% of the world's population lives in areas that are at a risk of having at least one of the main vector-borne diseases, as vector control remains neglected. To optimize interventions, it is necessary to make greater strategic investments, i.e., to improve entomological surveillance and coordination within and between sectors as well as to strengthen monitoring systems. For implementation, the anatomy, physiology, and habits of the vectors must be known in order to adopt correct measures for the control of these vectors. Thus, several methods are used according to climatic conditions, regions, and rainfall, as these directly influence the vector cycle. Finally, the use of techniques applied in molecular surveillance, such as xenomonitoring, can help to control vectors, thus preventing new outbreaks of arboviruses.
References
Bogoch, I. I., Brady, O. J., Kraemer, M. U., German, M., Creatore, M. I., Kulkarni, M. A., Brownstein, J. S., Mekaru, S. R., Hay, S., Groot, E., Watts, A., & Khan, K. (2016). Anticipating the international spread of Zika virus from Brazil. Lancet, 387(10016), 335-336. PMid:26777915.
Braga, I. A., & Valle, D. (2007). Aedes aegypti: vigilância, monitoramento da resistência e alternativas de controle no Brasil. Epidemiologia e Serviços de Saúde : Revista do Sistema Unico de Saúde do Brasil, 16(4), 295-302.
Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. (2009). Diretrizes Nacionais para a Prevenção e Controle de Epidemias de Dengue (Série A. Normas e Manuais Técnicos, 160 p.). Brasília: Ministério da Saúde.
Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância das Doenças Transmissíveis. (2013). Levantamento Rápido de Índices para Aedes aegypti (LIRAa) para vigilância entomológica do Aedes aegypti no Brasil: metodologia para avaliação dos índices de Breteau e Predial e tipo de recipientes (84 p.). Brasília: Ministério da Saúde.
Brasil. (2015a). ANVISA Registra Primeira Vacina Contra Dengue no Brasil. http://portal.anvisa.gov.br/wps/content/ anvisa+ portal/anvisa/sala+de+imprensa/menu+noticias+anos/2015/anvisa+registra+primeira+vacina+con tra+dengue+no+brasil
Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. (2015b). Monitoramento dos casos de dengue, febre de chikungunya e febre pelo vírus Zika até a Semana Epidemiológica 45. Boletim Epidemiológico, 46, 36.
Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. (2020). Monitoramento dos casos de arboviroses urbanas transmitidas pelo Aedes aegypti (dengue, chikungunya e zika), semanas epidemiológicas 1 a 38, 2020. Boletim Epidemiológico, 51, 41, 1-39.
Calvet, G., Aguiar, R. S., Melo, A. S. O., Sampaio, S. A., de Filippis, I., Fabri, A., Araujo, E. S. M., de Sequeira, P. C., de Mendonça, M. C. L., de Oliveira, L., Tschoeke, D. A., Schrago, C. G., Thompson, F. L., Brasil, P., Dos Santos, F. B., Nogueira, R. M. R., Tanuri, A., & de Filippis, A. M. B. (2016). Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. The Lancet. Infectious Diseases, 16(6), 653-660. PMid:26897108.
Capurro, M. L., Ribolla, P. E. M., de Bianchi, A. G., Marrelli, M. T., Magalhaes, M., Feitosa, F. M., Chinoca, J. P., & Burini, B. (2001). Transgenics flies. Biotecnologia Ciencia & Desenvolvimento, 18(22), 1-27.
Carrington, L. B., Armijos, M. V., Lambrechts, L., & Scott, T. W. (2013). Fluctuations at a low mean temperature accelerate dengue virus transmission by Aedes aegypti. PLoS Neglected Tropical Diseases, 7(4), e2190. http:// dx.doi.org/10.1371/journal.pntd.0002190. PMid:23638208.
Casseb, A. D. R., Casseb, L. M. N., Silva, S. P. D., & Vasconcelos, P. F. D. C. (2013). Arbovírus: importante zoonose na Amazônia Brasileira. Veterinária e Zootecnia, 20(3), 391-403.
Castro, M. G., Nogueira, R. M., Schatzmayr, H. G., Miagostovich, M. P., & Lourenço-de-Oliveira R. (2004). Dengue virus detection by using reverse transcription-polymerase chain reaction in saliva and progeny of experimentally infected Aedes albopictus from Brazil. Memórias do Instituto Oswaldo Cruz, 99, 809-814. http://dx.doi.org/10.1590/s0074-02762004000800005.
Center for Disease Control – CDC. (2012). Health Map. DengueNet. http://www.healthmap.org/dengue/
Chen, R., & Vasilakis, N. (2011). Dengue-Quo tu et quo vadis? Viruses, 3(9), 1562-1608. http://dx.doi.org/10.3390/ v3091562. PMid:21994796.
Chevillon, C., Briant, L., Renaud, F., & Devaux, C. (2008). The Chikungunya threat: an ecological and evolutionary perspective. Trends in Microbiology, 16(2), 80-88. http://dx.doi.org/10.1016/j.tim.2007.12.003. PMid:18191569.
Chiu, C. Y., Sánchez-San Martín, C., Bouquet, J., Li, T., Yagi, S., Tamhankar, M., Hodara, V. L., Parodi, L. M., Somasekar, S., Yu, G., Giavedoni, L. D., Tardif, S., & Patterson, J. (2017). Experimental Zika Virus inoculation in a new world monkey model reproduces key features of the human infection. Scientific Reports, 7(1), 1-11. http://dx.doi. org/10.1038/s41598-017-17067-w. PMid:29215081.
Choochote, W., Tippawangkosol, P., Jitpakdi, A., Sukontason, K. L., Pitasawat, B., Sukontason, K., & Jariyapan, N. (2001). Polygamy:the possibly significant behavior of Aedes aegypti and Aedes albopictus in relation to the efficient transmission of dengue virus. The Southeast Asian Journal of Tropical Medicine and Public Health, 32(4), 745-748. PMid:12041548.
Chouin-Carneiro, T., Vega-Rua, A., Vazeille, M., Yebakima, A., Girod, R., Goindin, D., Dupont-Rouzeyrol, M., Lourenço-de-Oliveira, R., & Failloux, A. B. (2016). Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika virus. PLoS Neglected Tropical Diseases, 10(3), e0004543. http://dx.doi. org/10.1371/journal.pntd.0004543. PMid:26938868.
Codeço, C. T., Lima, A. W. S., Araújo, S. C., Lima, J. B. P., Maciel-de-Freitas, R., Honório, N. A., Galardo, A. K. R., Braga, I. A., Coelho, G. E., & Valle, D. (2015). Surveillance of Aedes aegypti: comparison of house index with four alternative traps. PLoS Neglected Tropical Diseases, 9(2), e0003475. http://dx.doi.org/10.1371/journal. pntd.0003475. PMid:25668559.
Diaz, L. A., Flores, F. S., Quaglia, A., & Contigiani, M. S. (2013). Intertwined arbovirus transmission activity: reassessing the transmission cycle paradigm. Frontiers in Physiology, 3, 493. http://dx.doi.org/10.3389/ fphys.2012.00493. PMid:23335900.
Dos Reis, I. C., Gibson, G., Ayllón, T., de Medeiros Tavares, A., de Araújo, J. M. G., da Silva Monteiro, E., Rodrigues Aguiar, A., de Oliveira, J. V., de Paiva, A. A. P., Wana Bezerra Pereira, H., Dantas Monteiro, J., Sá Carvalho, M., Sabroza, P. C., & Alves Honório, N., & ARBOALVO Network. (2019). Entomo-virological surveillance strategy for dengue, Zika and chikungunya arboviruses in field-caught Aedes mosquitoes in an endemic urban area of the Northeast of Brazil. Acta Tropica, 197, 105061. http://dx.doi.org/10.1016/j.actatropica.2019.105061. PMid:31194961.
Driggers, R. W., Ho, C.-Y., Korhonen, E. M., Kuivanen, S., Jääskeläinen, A. J., Smura, T., Rosenberg, A., Hill, D. A., DeBiasi, R. L., Vezina, G., Timofeev, J., Rodriguez, F. J., Levanov, L., Razak, J., Iyengar, P., Hennenfent, A., Kennedy, R., Lanciotti, R., du Plessis, A., & Vapalahti, O. (2016). Zika Virus Infection with Prolonged Maternal Viremia and Fetal Brain Abnormalities. The New England Journal of Medicine, 374(22), 2142-2151. http://dx.doi. org/10.1056/NEJMoa1601824. PMid:27028667.
Duncombe, J., Clements, A., Hu, W., Weinstein, P., Ritchie, S., & Espino, F. E. (2012). Geographical information systems for dengue surveillance. The American Journal of Tropical Medicine and Hygiene, 86(5), 753-755. http://dx.doi.org/10.4269/ajtmh.2012.11-0650. PMid:22556070.
Farraudière, L., Sonor, F., Crico, S., Étienne, M., Mousson, L., Hamel, R., Missé, D., Failloux, A.-B., Simard, F., & Yébakima, A. (2017). First detection of dengue and Chikungunya viroses in natural populations of Aedes aegypti in Martinique during 2013-2015 concomitant outbreak. Revista Panamericana de Salud Pública, 41, e63. http://dx.doi.org/10.26633/RPSP.2017.63. PMid:28902276.
Fernández, Z., Moncayo, A., Forattini, O. P., & Weaver, S. C. (2004). Susceptibility of urban and rural populations of Aedes albopictus from Sao Paulo State, Brazil, to infection by dengue-1 and −2 viruses. Journal of Medical Entomology, 41(5), 961-964. http://dx.doi.org/10.1603/0022-2585-41.5.961. PMid:15535628.
Fernández-Salas, I., Danis-Lozano, R., Casas-Martínez, M., Ulloa, A., Bond, J. G., Marina, C. F., Lopez-Ordóñez, T., Elizondo-Quiroga, A., Torres-Monzón, J. A., & Díaz-González, E. E. (2015). Historical inability to control Aedes aegypti as a main contributor of fast dispersal of chikungunya outbreaks in Latin America. Antiviral Research, 124, 30-42. http://dx.doi.org/10.1016/j.antiviral.2015.10.015. PMid:26518229.
Ferreira-de-Lima, V. H., & Lima-Camara, T. N. (2018). Natural vertical transmission of dengue virus in Aedes aegypti and Aedes albopictus: a stematic review. Parasites & Vectors, 11, 77. http://dx.doi.org/10.1186/s13071-018-2643-9.
Gomes, A. D. C. (1998). Medidas dos níveis de infestação urbana para Aedes (Stegomyia) aegypti e Aedes (Stegomyia) albopictus em programa de vigilância entomológica. Informe Epidemiológico do SUS, 7(3), 49-57.
Gomes, A. D. C., Silva, N. N. D., Bernal, R. T. I., & Souza, A. D. (2008). Estimação da infestação predial por Aedes aegypti (Diptera:Culicidae) por meio da armadilha Adultrap. Epidemiologia e Serviços de Saúde : Revista do Sistema Unico de Saúde do Brasil, 17(4), 293-300.
Gu, W., Unnasch, T. R., Katholi, C. R., Lampman, R., & Novak, R. J. (2008). Fundamental issues in mosquito surveillance for arboviral transmission. Transactions of the Royal Society of Tropical Medicine and Hygiene, 102(8), 817-822. http://dx.doi.org/10.1016/j.trstmh.2008.03.019. PMid:18466940.
Gubler, D. J. (2001). Human arbovirus infections worldwide. Annals of the New York Academy of Sciences, 951(1), 13-24. http://dx.doi.org/10.1111/j.1749-6632.2001.tb02681.x. PMid:11797771.
Gurukumar, K. R., Priyadarshini, D., Patil, J. A., Bhagat, A., Singh, A., Shah, P. S., & Cecilia, D. (2009). Development of real time PCR for detection and quantitation of Dengue Viruses. Virology Journal, 23(6), 10. http://dx.doi. org/10.1186/1743-422X-6-10.
Gutiérrez-Bugallo, G., Piedra, L. A., Rodriguez, M., Bisset, J. A., Lourenço-de-Oliveira, R., Weaver, S. C., Vasilakis, N., & Vega-Rúa, A. (2019). Vector-borne transmission and evolution of Zika virus. Nature Ecology & Evolution, 3(4), 561-569. PMid:30886369.
Guzman, M. G., Halstead, S. B., Artsob, H., Buchy, P., Farrar, J., Gubler, D. J., Hunsperger, E., Kroeger, A., Margolis, H. S., Martínez, E., Nathan, M. B., Pelegrino, J. L., Simmons, C., Yoksan, S., & Peeling, R. W. (2010). Dengue: a continuing global threat. Nature Reviews. Microbiology, 8(12, Suppl.), S7-S16. PMid:21079655.
Hanley, K. A., Monath, T. P., Weaver, S. C., Rossi, S. L., Richman, R. L., & Vasilakis, N. (2013). Fever versus fever: the role of host and vector susceptibility and interspecific competition in shaping the current and future distributions of the sylvatic cycles of dengue virus and yellow fever virus. Infection, Genetics and Evolution, 19, 292-311. http://dx.doi.org/10.1016/j.meegid.2013.03.008.
Hayes, E. B. (2009). Zika virus outside Africa. Emerging and Infectious Diseases, 15(9), 1347. http://dx.doi.org/10.3201/ eid1509.090442.
Hernández-Ávila, J. E., Rodríguez, M. H., Santos-Luna, R., Sánchez-Castañeda, V., Román-Pérez, S., Ríos-Salgado, V. H., & Salas-Sarmiento, J. A. (2013). Nation-wide, web-based, geographic information system for the integrated surveillance and control of dengue fever in Mexico. PLoS One, 8(8), e70231. http://dx.doi.org/10.1371/journal. pone.0070231. PMid:23936394.
Honório, N. A., Wiggins, K., Eastmond, B., Câmara, D. C. P., & Alto, B. W. (2019). Experimental vertical transmission of chikungunya virus by brazilian and florida Aedes albopictus populations. Viruses, 11(4), 353. PMid:30999594.
Horta, M. A. P., Ferreira, A. P., de Oliveira, R. B., Wermelinger, E. D., de Oliveira Ker, F. T., Ferreira, A. C. N., & Catita, C. M. S. (2013). Os efeitos do crescimento urbano sobre a dengue. Revista Brasileira em Promoção da Saúde, 26(4), 539-547.
Kusnanto, H. F. A., & Sunartono, H. (2011). Web-based integrated DHF surveillance system in Sleman district Yogyakarta Indonesia. http://www.amic.org.sg/ ict/ external/ awards/ 0402A5- L48_Interim_ Report1.pdf
Lagrotta, M. T. F., Silva, W., & Souza-Santos, R. (2008). Identification of key areas for Aedes aegypti control through geoprocessing in Nova Iguaçu, Rio de Janeiro State, Brazil. Cadernos de Saúde Pública, 24, 70-80. http://dx.doi. org/10.1590/s0102-311x2008000100007.
Leake, C. J. (1984). Transovarial transmission of arboviruses by mosquitoes. In M. A. Mayo & K. A. Herrop (Eds.), Vectors in Virus Biology (pp. 63-91). Academic Press.
Leparc-Goffart, I., Baragatti, M., Temmam, S., Tuiskunen, A., Moureau, G., Charrel, R., & de Lamballerie, X. (2009). Development and validation of real-time one-step reverse transcription-PCR for the detection and typing of dengue viruses. Journal of Clinical Virology, 45(1), 61-66. http://dx.doi.org/10.1016/j.jcv.2009.02.010. PMID: 19345140.
Lipsitch, M., Siller, S., & Nowak, M. A. (1996). The evolution of virulence in pathogens with vertical and horizontal transmission. Evolution; International Journal of Organic Evolution, 50(5), 1729-1741. http://dx.doi. org/10.1111/j.1558-5646.1996.tb03560.x. PMid:28565576.
Lopes, N., Nozawa, C., & Linhares, R. E. C. (2014). Características gerais e epidemiologia dos arbovírus emergentes no Brasil. Revista Pan-Amazônica de Saúde, 5(3), 55-64. http://dx.doi.org/10.5123/S2176-62232014000300007.
Lourenço-de-Oliveira, R., & Failloux, A. B. (2017). High risk for chikungunya virus to initiate an enzootic sylvatic cycle in the tropical Americas. PLoS Neglected Tropical Diseases, 11(6), e0005698. http://dx.doi.org/10.1371/ journal.pntd.0005698. PMid:28662031.
Macedo, G. A., de Araújo, J. M., Schatzmayr, H. G., Costa, F. A., de Filippis, A. M., Santos, F. B., & Nogueira, R. M. (2013). Virological surveillance for early warning of dengue epidemics in the State of Rio de Janeiro, Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene, 107(3), 141-146. http://dx.doi.org/10.1093/ trstmh/trs091. PMid:23322430.
Maniero, V. C., Rangel, P. S. C., Coelho, L. M. C., Silva, C. S. B., Aguiar, R. S., Lamas, C. C., & Cardozo, S. V. (2019). Identification of Zika virus in immature phases of Aedes aegypti and Aedes albopictus: a surveillance strategy for outbreak anticipation. Brazilian Journal of Medical and Biological Research, 52(11), 1-8. http://dx.doi. org/10.1590/1414-431x20198339. PMid:31721902.
Martins, V. E., Alencar, C. H., Kamimura, M. T., de Carvalho Araújo, F. M., De Simone, S. G., Dutra, R. F., & Guedes, M. I. (2012). Occurrence of natural vertical transmission of dengue-2 and dengue-3 viruses in Aedes aegypti and Aedes albopictus in Fortaleza, Ceara. PLoS One, 7(7), e41386. http://dx.doi.org/10.1371/journal.pone.0041386. PMid:22848479.
Medeiros, A. S., Costa, D., Branco, M., Sousa, D., Monteiro, J. D., Galvão, S., Azevedo, P., Fernandes, J. V., Jeronimo, S., & Araújo, J. (2018). Dengue vírus in Aedes aegypti and Aedes albopictus in urban áreas in the state of Rio Grande do Norte, Brazil: Importance of virological and entomological surveillance. PLoS One, 13(3), e0194108. http://dx.doi.org/10.1371/journal.pone.0194108. PMid:29534105.
Melo-Santos, M. A. V., Araújo, A. P., Rios, E. M. M., & Regis, L. (2009). Long lasting persistence of Bacillus thuringiensis serovar. israelensis larvicidal activity in Aedes aegypti (Diptera: Culicidae) breeding places is associated to bacteria recycling. Biological Control, 49(2), 186-191. http://dx.doi.org/10.1016/j.biocontrol.2009.01.011.
Miagostovich, M. P., Santos, F. B., Araújo, E. S. M., Dias, J., Schatzmayr, H. G., & Nogueira, R. M. R. (1997). Diagnosis of dengue by using reverse transcriptase-polimerase chain reaction. Memorias do Instituto Oswaldo Cruz, 92(5), 595-600. http://dx.doi.org/10.1590/S0074-02761997000500006. PMid:9566225.
Monath, T. P. (2001). Yellow fever: an update. Lancet, 1, 11-20. http://dx.doi.org/10.1016/S1473-3099(01)00016-0.
Musso, D., & Gubler, D. J. (2016). Zika virus. Clinical Microbiology Reviews, 29(3), 487-524. http://dx.doi.org/10.1128/ CMR.00072-15. PMid:27029595.
Okuda, K., de Souza Caroci, A., Ribolla, P. E., de Bianchi, A. G., & Bijovsky, A. T. (2002). Functional morphology of adult female Culex quinquefasciatus midgut during blood digestion. Tissue and Cell, 34(3), 210-219. http:// dx.doi.org/10.1016/s0040-8166(02)00032-0.
Olson, K. E., Higgs, S., Gaines, P. J., Powers, A. M., Davis, B. S., Kamrud, K. I., Carlson, J. O., Blair, C. D., & Beaty, B. J. (1996). Genetically Engineered Resistance to Dengue-2 Virus Transmission in Mosquitoes. Science, 272(5263), 884-886. http://dx.doi.org/10.1126/science.272.5263.884.
Pan American Health Organization – PAHO. (2016). Dengue: Guidelines for patient care in the región of the Americas. 2nd ed. PAHO.
Paulsons, S. L., Poirier, S. J., Grimstad, P. R., & Craig Junior, G. B. (1992). Vector competence of Aedes hendersoni (Diptera: Culicidae) for La Crosse virus: lack of impaired function in virus-infected salivary glands and enhanced virus transmission by sporozoite-infected mosquitoes. Journal of Medical Entomology, 29(3), 483-488. PMid:1625297.
Petersen, L. R., Jamieson, D. J., Powers, A. M., & Honein, M. A. (2016). Zika virus. The New England Journal of Medicine, 374(16), 1552-1563. http://dx.doi.org/10.1056/NEJMra1602113. PMid:27028561.
Pierro, D. J., Powers, E. L., & Olson, K. E. (2007). Genetic determinants of Sindbis virus strain TR339 affecting midgut infection in the mosquito Aedes aegypti. Journal of General Virology, 88(5), 1545-1554. http://dx.doi. org/10.1099/vir.0.82577-0.
Ramasamy, R., Surendran, S. N., Jude, P. J., Dharshini, S., & Vinobaba, M. (2011). Larval development of Aedes aegypti and Aedes albopictus in peri-urban brackish water and its implications for transmission of arboviral diseases. PLoS Neglected Tropical Diseases, 5(11), e1369. http://dx.doi.org/10.1371/journal.pntd.0001369. PMid:22132243.
Reeves, W. K. (2004). Oviposition by Aedes aegypti (Diptera: Culicidae) in relation to conspecific larvae infected with internal symbiotes. Journal of Vector Ecology, 29(1), 159-163. PMid:15266753.
Rubel, F., & Kottek, M. (2010). Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorologische Zeitschrift (Berlin), 19(2), 135-141. http://dx.doi. org/10.1127/0941-2948/2010/0430.
Salazar, M. I., Richardson, J. H., Sánchez-Vargas, I., Olson, K. E., & Beaty, B. J. (2007). Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiology, 7, 9. http://dx.doi. org/10.1186/1471-2180-7-9. PMid:17263893.
Sánchez-Vargas, I., Harrington, L. C., Doty, J. B., Black 4th, W. C., & Olson, K. E. (2018). Demonstration of eficiente vertical and venereal transmission of dengue virus type-2 in a genetically diverse laboratory strain of Aedes aegypti. PLoS Neglected Tropical Diseases, 12(8), e0006754. http://dx.doi.org/10.1371/journal.pntd.0006754. PMid:30169505.
Schwartz, E., Weld, L. H., Wilder-Smith, A., von Sonnenburg, F., Keystone, J. S., Kain, K. C., Torresi, J., & Freedman, D. O., & GeoSentinel Surveillance Network (2008). Seasonality, annual trends, and characteristics of dengue among ill returned travelers, 1997-2006. Emerging Infectious Diseases, 14(7), 1081-1088. http://dx.doi.org/10.3201/ eid1407.071412. PMid:18598629.
Seferovic, M., Sánchez-San Martín, C., Tardif, S. D., Rutherford, J., Castro, E., Li, T., Hodara, V. L., Parodi, L. M., Giavedoni, L., Layne-Colon, D., Tamhankar, M., Yagi, S., Martyn, C., Reyes, K., Suter, M. A., Aagaard, K. M., Chiu, C. Y., & Patterson, J. L. (2018). Experimental Zika virus infection in the pregnant common marmoset induces spontaneous fetal loss and neurodevelopmental abnormalities. Scientific Reports, 8(1), 1-15. http:// dx.doi.org/10.1038/s41598-018-25205-1.
Streit, J. A., Yang, M., Cavanaugh, J. E., & Polgreen, P. M. (2011). Upward trend in dengue incidence among hospitalized patients, United States. Emerging Infectious Diseases, 17(5), 914-916. http://dx.doi.org/10.3201/ eid1705.101023.
Terzian, A. C. B., Zini, N., Sacchetto, L., Rocha, R. F., Parra, M. C. P., Del Sarto, J. L., Dias, A. C. F., Coutinho, F., Rayra, J., da Silva, R. A., Costa, V. V., Fernandes, N. C. C. A., Réssio, R., Díaz-Delgado, J., Guerra, J., Cunha, M. S., Catão- Dias, J. L., Bittar, C., Reis, A. F. N., Santos, I. N. P. D., Ferreira, A. C. M., Cruz, L. E. A. A., Rahal, P., Ullmann, L., Malossi, C., Araújo Junior, J. P., Widen, S., de Rezende, I. M., Mello, É., Pacca, C. C., Kroon, E. G., Trindade, G., Drumond, B., Chiaravalloti-Neto, F., Vasilakis, N., Teixeira, M. M., & Nogueira, M. L. (2018). Evidence of natural Zika virus infection in neotropical non-human primates in Brazil. Scientific Reports, 8(1), 16034. http://dx.doi. org/10.1038/s41598-018-34423-6. PMid:30375482.
Thavara, U., Tawatsin, A., & Nagao, Y. (2014). Simulations to compare efficacies of tetravalent dengue vaccines and mosquito vector control. Epidemiology and Infection, 142(6), 1245-1258. http://dx.doi.org/10.1017/ S0950268813001866. PMid:23925059.
Thenmozhi, V., Kabilan, L., Samuel, P. P., & Dash, A. P. (2005). Short Communication: detection of dengue virus antigens in desiccated mosquitoes: an improved tool for surveillance. Tropical medicine & international health : TM & IH, 10(2), 187-189. http://dx.doi.org/10.1111/j.1365-3156.2004.01360.x. PMid:15679562.
Urdaneta, L., Herrera, F., Pernalete, M., Zoghbi, N., Rubio-Palis, Y., Barrios, R., Rivero, J., Comach, G., Jiménez, M., & Salcedo, M. (2005). Detection of dengue viruses in field-caught Aedes aegypti (Diptera: Culicidae) in Maracay, Aragua state, Venezuela by type-specific polymerase chain reaction. Infection, Genetics and Evolution, 5(2), 177-184. http://dx.doi.org/10.1016j.meegid.2004.09.004.
Vanchiere, J. A., Ruiz, J. C., Brady, A. G., Kuehl, T. J., Williams, L. E., Baze, W. B., Wilkerson, G. K., Nehete, P. N., McClure, G. B., Rogers, D. L., Rossi, S. L., Azar, S. R., Roundy, C. M., Weaver, S. C., Vasilakis, N., Simmons, J. H., & Abee, C. R. (2018). Experimental Zika Virus Infection of Neotropical Primates. The American Journal of Tropical Medicine and Hygiene, 98(1), 173-177. PMid:29182145.
Vasilakis, N., & Weaver, S. C. (2008). The history and evolution of human dengue emergence. Advances in Virus Research, 72, 1-76. http://dx.doi.org/10.1016/S0065-3527(08)00401-6. PMid:19081488.
Vega-Rúa, A., Zouache, K., Girod, R., Failloux, A. B., & Lourenço-de-Oliveira, R. (2014). High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of Chikungunya virus. Journal of Virology, 88, 6294-6306. http://dx.doi.org/10.1128/JVI.00370-14.
Volk, S. M., Chen, R., Tsetsarkin, K. A., Adams, A. P., Garcia, T. I., Sall, A. A., Nasar, F., Schuh, A. J., Holmes, E. C., Higgs, S., Maharaj, P. D., Brault, A. C., & Weaver, S. C. (2010). Genome-scale phylogenetic analyses of chikungunya virus reveal independent emergences of recent epidemics and various evolutionary rates. Journal of Virology, 84(13), 6497-6504. http://dx.doi.org/10.1128/JVI.01603-09. PMid:20410280.
Wang, E., Ni, H., Xu, R., Barrett, A. D., Watowich, S. J., Gubler, D. J., & Weaver, S. C. (2000). Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses. Journal of Virology, 74, 3227-3234. http://dx.doi.org/10.1128/ jvi.74.7.3227-3234.2000.
Weaver, S. C., & Reisen, W. K. (2010). Present and future arbovirus threats. Antiviral Research, 85(2), 328-345. http://dx.doi.org/10.1016/j.antiviral.2009.10.008. PMid:19857523.
World Health Organization – WHO. (1996). Chemical methods for the control of vectors and pests of public health importance. WHO. http://apps.who.int/iris/bitstream/10665/63504/1/WHO_CTD_WHOPES_97.2.pdf
World Health Organization – WHO. (2012). Global Health Atlas. WHO. http://apps.who.int/globalatlas/
World Health Organization – WHO. (2017). Integrating neglected tropical diseases in global health and development. Fourth WHO report on neglected tropical diseases. WHO. http://www.who.int/neglected_diseases/ resources/9789241565448/en/
World Health Organization – WHO. (2020). Arbovirosis emergentes y reemergentes transmitidas por Aedes en la Región de las Américas: implicaciones en materia de políticas de salud. WHO. https://iris.paho.org/handle/10665.2/50939
Zambrano, L. I., Sierra, M., Lara, B., Rodríguez-Núñez, I., Medina, M. T., Lozada-Riascos, C. O., & Rodríguez-Morales, A. J. (2017). Estimating and mapping the incidence of dengue and chikungunya in Honduras during 2015 using Geographic Information Systems (GIS). Journal of Infection and Public Health, 10(4), 446-456. http:// dx.doi.org/10.1016/j.jiph.2016.08.003. PMid:27562685.
Zara, A. L. S. A, Santos, S.M., Fernandes-Oliveira, E. S., Carvalho, R. G, & Coelho, G. E. (2016). Aedes aegypti control strategies: a review. Epidemiologia e Serviços de Saúde, 25(2), 391-404. http://dx.doi.org/10.5123/ S1679-49742016000200017.
Zhang, W., Heil, M., Kuhn, R. J., & Baker, T. S. (2010). Heparin binding sites on Ross River virus revealed by electron cryo-microscopy. Virology, 332(2), 511-518. http://dx.doi.org/10.1016/j.virol.2004.11.043. PMid:15680416.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2021 Viviane Câmara Maniero, Raíssa Dias Fares, Cristiane da Cruz Lamas, Sergian Vianna Cardozo